Skip to main content
Top
Published in: Cellulose 10/2021

26-05-2021 | Original Research

Functionalization of cellulose nanocrystal powder by non-thermal atmospheric-pressure plasmas

Authors: Zineb Matouk, Rocío Rincón, Badr Torriss, Amir Mirzaei, Joëlle Margot, Annie Dorris, Stephanie Beck, Richard M. Berry, Mohamed Chaker

Published in: Cellulose | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Despite promising characteristics such as the biodegradability and the environmentally benign nature of cellulose nanocrystal (CNC) based composites, their poor dispersion and agglomeration in thermoplastic matrix during the melting process is a “bottleneck” in the development of these composites. In this work, a cylindrical atmospheric pressure dielectric barrier discharge was employed to functionalize CNCs to reduce their surface hydrophilicity and improve their dispersion in polar organic solvents. Three different gas mixtures were used for plasma treatment, argon/methane, argon/silane and an argon/methane followed by argon/silane. In all cases, the plasma treatment was conducted below 90 °C as determined from optical emission spectroscopy analysis. The X-ray diffraction analysis of both raw and plasma-treated CNC powder confirmed that the CNC crystallographic properties remained unchanged after plasma treatment. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis revealed the presence of hydrophobic C–Hx moieties on the CNC granular surface after argon/methane plasma treatment whereas SiHx, Si–O–Si, SiC bonds were formed after argon/silane plasma treatment. Under these experimental conditions, water wettability tests revealed some significant water repellency for the treated cellulosic material. Moreover, the SiHx moieties formed in silane-treated CNCs clearly enhanced the hydrophobicity of the CNC powder. Contrariwise, the sole CHx moieties synthesized by argon/methane plasma did not yield such enhancement of the CNC wettability. High-resolution scanning electron microscopy images showed the presence of agglomerated granules with 5–10 µm diameters in size. The surface functionalities of CNC powder enhanced its dispersibility in polar solvents. Overall, this study emphasizes that atmospheric pressure dielectric barrier discharge is suitable to process thermo-sensitive CNCs.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRef Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRef
go back to reference Abenojar J, Barbosa A, Ballesteros Y, Del Real J, Da Silva L, Martínez M (2014) Effect of surface treatments on natural cork: surface energy, adhesion, and acoustic insulation. Wood Sci Technol 48:207–224CrossRef Abenojar J, Barbosa A, Ballesteros Y, Del Real J, Da Silva L, Martínez M (2014) Effect of surface treatments on natural cork: surface energy, adhesion, and acoustic insulation. Wood Sci Technol 48:207–224CrossRef
go back to reference Aguayo MG, Fernández Pérez A, Reyes G, Oviedo C, Gacitúa W, Gonzalez R, Uyarte O (2018) Isolation and characterization of cellulose nanocrystals from rejected fibers originated in the kraft pulping process. Polymers 10:1145PubMedCentralCrossRef Aguayo MG, Fernández Pérez A, Reyes G, Oviedo C, Gacitúa W, Gonzalez R, Uyarte O (2018) Isolation and characterization of cellulose nanocrystals from rejected fibers originated in the kraft pulping process. Polymers 10:1145PubMedCentralCrossRef
go back to reference Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresour Technol 99:1664–1671PubMedCrossRef Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresour Technol 99:1664–1671PubMedCrossRef
go back to reference Alexander MR, Short RD, Jones FR, Michaeli W, Blomfield CJ (1999) A study of HMDSO/O2 plasma deposits using a high-sensitivity and -energy resolution XPS instrument: curve fitting of the Si 2p core level. Appl Surf Sci 137:179–183CrossRef Alexander MR, Short RD, Jones FR, Michaeli W, Blomfield CJ (1999) A study of HMDSO/O2 plasma deposits using a high-sensitivity and -energy resolution XPS instrument: curve fitting of the Si 2p core level. Appl Surf Sci 137:179–183CrossRef
go back to reference Altaner CM, Thomas LH, Fernandes AN, Jarvis MC (2014) How cellulose stretches: synergism between covalent and hydrogen bonding. Biomacromol 15:791–798CrossRef Altaner CM, Thomas LH, Fernandes AN, Jarvis MC (2014) How cellulose stretches: synergism between covalent and hydrogen bonding. Biomacromol 15:791–798CrossRef
go back to reference Arpagaus C, Oberbossel G, Rudolf von Rohr P (2018) Plasma treatment of polymer powders–from laboratory research to industrial application. Plasma Process Polym 15:1800133CrossRef Arpagaus C, Oberbossel G, Rudolf von Rohr P (2018) Plasma treatment of polymer powders–from laboratory research to industrial application. Plasma Process Polym 15:1800133CrossRef
go back to reference Babaei S, Profili J, Asadollahi S, Sarkassian A, Dorris A, Beck S, Stafford L (2020) Analysis of transport phenomena during plasma deposition of hydrophobic coatings on porous cellulosic substrates in plane-to-plane dielectric barrier discharges at atmospheric pressure. Plasma Process Polym 17:2000091CrossRef Babaei S, Profili J, Asadollahi S, Sarkassian A, Dorris A, Beck S, Stafford L (2020) Analysis of transport phenomena during plasma deposition of hydrophobic coatings on porous cellulosic substrates in plane-to-plane dielectric barrier discharges at atmospheric pressure. Plasma Process Polym 17:2000091CrossRef
go back to reference Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790PubMedCrossRef Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790PubMedCrossRef
go back to reference Benítez AJ, Walther A (2017) Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. J Mater Chem A 5:16003–16024CrossRef Benítez AJ, Walther A (2017) Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. J Mater Chem A 5:16003–16024CrossRef
go back to reference Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28:6114–6123PubMedCrossRef Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28:6114–6123PubMedCrossRef
go back to reference Bormashenko E, Grynyov R (2012) Plasma treatment allows water suspending of the natural hydrophobic powder (lycopodium). Colloids Surf B 97:171–174CrossRef Bormashenko E, Grynyov R (2012) Plasma treatment allows water suspending of the natural hydrophobic powder (lycopodium). Colloids Surf B 97:171–174CrossRef
go back to reference Brunet P, Rincón R, Margot J, Massines F, Chaker M (2017) Deposition of homogeneous carbon-TiO2 composites by atmospheric pressure DBD. Plasma Process Polym 14:1600075CrossRef Brunet P, Rincón R, Margot J, Massines F, Chaker M (2017) Deposition of homogeneous carbon-TiO2 composites by atmospheric pressure DBD. Plasma Process Polym 14:1600075CrossRef
go back to reference Bullard KK, Srinivasarao M, Gutekunst WR (2020) Modification of cellulose nanocrystal surface chemistry with diverse nucleophiles for materials integration. J Mater Chem a 8:18024–18031CrossRef Bullard KK, Srinivasarao M, Gutekunst WR (2020) Modification of cellulose nanocrystal surface chemistry with diverse nucleophiles for materials integration. J Mater Chem a 8:18024–18031CrossRef
go back to reference Celebi H, Kurt A (2015) Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydr Polym 133:284–293PubMedCrossRef Celebi H, Kurt A (2015) Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydr Polym 133:284–293PubMedCrossRef
go back to reference Chan KV, Onyshchenko Y, Asadian M, Nikiforov AY, Declercq H, Morent R, De Geyter N (2020) Investigating the stability of cyclopropylamine-based plasma polymers in water. Appl Surf Sci 517:146–167CrossRef Chan KV, Onyshchenko Y, Asadian M, Nikiforov AY, Declercq H, Morent R, De Geyter N (2020) Investigating the stability of cyclopropylamine-based plasma polymers in water. Appl Surf Sci 517:146–167CrossRef
go back to reference Ching YC et al (2016) Rheological properties of cellulose nanocrystal-embedded polymer composites: a review. Cellulose 23:1011–1030CrossRef Ching YC et al (2016) Rheological properties of cellulose nanocrystal-embedded polymer composites: a review. Cellulose 23:1011–1030CrossRef
go back to reference Cho SC, Hong YC, Cho SG, Ji YY, Han CS, Uhm HS (2009) Surface modification of polyimide films, filter papers, and cotton clothes by HMDSO/toluene plasma at low pressure and its wettability. Curr Appl Phys 9:1223–1226CrossRef Cho SC, Hong YC, Cho SG, Ji YY, Han CS, Uhm HS (2009) Surface modification of polyimide films, filter papers, and cotton clothes by HMDSO/toluene plasma at low pressure and its wettability. Curr Appl Phys 9:1223–1226CrossRef
go back to reference Dimic-Misic K et al (2019) Nitrogen plasma surface treatment for improving polar ink adhesion on micro/nanofibrillated cellulose films. Cellulose 26:3845–3857CrossRef Dimic-Misic K et al (2019) Nitrogen plasma surface treatment for improving polar ink adhesion on micro/nanofibrillated cellulose films. Cellulose 26:3845–3857CrossRef
go back to reference Dimitrakellis P, Gogolides E (2018) Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: a review. Adv Colloid Interface Sci 254:1–21PubMedCrossRef Dimitrakellis P, Gogolides E (2018) Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: a review. Adv Colloid Interface Sci 254:1–21PubMedCrossRef
go back to reference Dimitrakellis P, Travlos A, Psycharis VP, Gogolides E (2017) Superhydrophobic paper by facile and fast atmospheric pressure plasma etching. Plasma Process Polym 14:1600069CrossRef Dimitrakellis P, Travlos A, Psycharis VP, Gogolides E (2017) Superhydrophobic paper by facile and fast atmospheric pressure plasma etching. Plasma Process Polym 14:1600069CrossRef
go back to reference Dumitrascu N, Topala I, Popa G (2005) Dielectric barrier discharge technique in improving the wettability and adhesion properties of polymer surfaces. IEEE Trans Plasma Sci 33:1710–1714CrossRef Dumitrascu N, Topala I, Popa G (2005) Dielectric barrier discharge technique in improving the wettability and adhesion properties of polymer surfaces. IEEE Trans Plasma Sci 33:1710–1714CrossRef
go back to reference Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338PubMedCrossRef Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338PubMedCrossRef
go back to reference Ferreira FV, Pinheiro IF, de Souza SF, Mei LH, Lona LM (2019) Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: a short review. J Compos Sci 3(2):51CrossRef Ferreira FV, Pinheiro IF, de Souza SF, Mei LH, Lona LM (2019) Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: a short review. J Compos Sci 3(2):51CrossRef
go back to reference French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
go back to reference Ghasemlou M, Daver F, Ivanova EP, Adhikari B (2019) Bio-inspired sustainable and durable superhydrophobic materials: from nature to market. J Mater Chem a 7:16643–16670CrossRef Ghasemlou M, Daver F, Ivanova EP, Adhikari B (2019) Bio-inspired sustainable and durable superhydrophobic materials: from nature to market. J Mater Chem a 7:16643–16670CrossRef
go back to reference Habibi Y, Aouadi S, Raquez J-M, Dubois P (2013) Effects of interfacial stereocomplexation in cellulose nanocrystal-filled polylactide nanocomposites. Cellulose 20:2877–2885CrossRef Habibi Y, Aouadi S, Raquez J-M, Dubois P (2013) Effects of interfacial stereocomplexation in cellulose nanocrystal-filled polylactide nanocomposites. Cellulose 20:2877–2885CrossRef
go back to reference Hishikawa Y, Togawa E, Kondo T (2017) Characterization of individual hydrogen bonds in crystalline regenerated cellulose using resolved polarized FTIR spectra. ACS Omega 2:1469–1476PubMedPubMedCentralCrossRef Hishikawa Y, Togawa E, Kondo T (2017) Characterization of individual hydrogen bonds in crystalline regenerated cellulose using resolved polarized FTIR spectra. ACS Omega 2:1469–1476PubMedPubMedCentralCrossRef
go back to reference Jiang Z, Tang L, Gao X, Zhang W, Ma J, Zhang L (2019) Solvent regulation approach for preparing cellulose-nanocrystal-reinforced regenerated cellulose fibers and their properties. ACS Omega 4:2001–2008PubMedPubMedCentralCrossRef Jiang Z, Tang L, Gao X, Zhang W, Ma J, Zhang L (2019) Solvent regulation approach for preparing cellulose-nanocrystal-reinforced regenerated cellulose fibers and their properties. ACS Omega 4:2001–2008PubMedPubMedCentralCrossRef
go back to reference Ju X, Bowden M, Brown EE, Zhang X (2015) An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr Polym 123:476–481PubMedCrossRef Ju X, Bowden M, Brown EE, Zhang X (2015) An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr Polym 123:476–481PubMedCrossRef
go back to reference Kaboorani A, Riedl B (2015) Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Ind Crops Prod 65:45–55CrossRef Kaboorani A, Riedl B (2015) Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Ind Crops Prod 65:45–55CrossRef
go back to reference Khanjanzadeh H, Behrooz R, Bahramifar N, Gindl-Altmutter W, Bacher M, Edler M, Griesser T (2018) Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Int j Biol Macromol 106:1288–1296PubMedCrossRef Khanjanzadeh H, Behrooz R, Bahramifar N, Gindl-Altmutter W, Bacher M, Edler M, Griesser T (2018) Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Int j Biol Macromol 106:1288–1296PubMedCrossRef
go back to reference Kobayashi Y, Fujie S, Imamura K, Kobayashi H (2021) Structure and hydrogen generation mechanism of Si-based agent. Appl Surf Sci 536:147398CrossRef Kobayashi Y, Fujie S, Imamura K, Kobayashi H (2021) Structure and hydrogen generation mechanism of Si-based agent. Appl Surf Sci 536:147398CrossRef
go back to reference Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos B Eng 44:120–127CrossRef Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos B Eng 44:120–127CrossRef
go back to reference Kusano Y, Madsen B, Berglund L, Aitomäki Y, Oksman K (2018) Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces. Surf Eng 34:825–831CrossRef Kusano Y, Madsen B, Berglund L, Aitomäki Y, Oksman K (2018) Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces. Surf Eng 34:825–831CrossRef
go back to reference Kusunoki I, Igari Y (1992) XPS study of a SiC film produced on Si(100) by reaction with a C2H2 beam. Appl Surf Sci 59:95–104CrossRef Kusunoki I, Igari Y (1992) XPS study of a SiC film produced on Si(100) by reaction with a C2H2 beam. Appl Surf Sci 59:95–104CrossRef
go back to reference Li S, Xie H, Zhang S, Wang X (2007) Facile transformation of hydrophilic cellulose into superhydrophobic cellulose. Chem Commun 46:4857–4859CrossRef Li S, Xie H, Zhang S, Wang X (2007) Facile transformation of hydrophilic cellulose into superhydrophobic cellulose. Chem Commun 46:4857–4859CrossRef
go back to reference Liu C-F, Ren J-L, Xu F, Liu J-J, Sun J-X, Sun R-C (2006) Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. J Agric Food Chem 54:5742–5748CrossRef Liu C-F, Ren J-L, Xu F, Liu J-J, Sun J-X, Sun R-C (2006) Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. J Agric Food Chem 54:5742–5748CrossRef
go back to reference Lourenço AF, Gamelas JAF, Sarmento P, Ferreira PJT (2020) Cellulose micro and nanofibrils as coating agent for improved printability in office papers. Cellulose 27:6001–6010CrossRef Lourenço AF, Gamelas JAF, Sarmento P, Ferreira PJT (2020) Cellulose micro and nanofibrils as coating agent for improved printability in office papers. Cellulose 27:6001–6010CrossRef
go back to reference Lu R, Gan W, Wu B-h, Zhang Z, Guo Y, Wang H-f (2005) C− H stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol (n= 1–8) interfaces. J Phys Chem B 109:14118–14129PubMedCrossRef Lu R, Gan W, Wu B-h, Zhang Z, Guo Y, Wang H-f (2005) C− H stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol (n= 1–8) interfaces. J Phys Chem B 109:14118–14129PubMedCrossRef
go back to reference Luque J, Crosley DR (1999) LIFBASE: Database and spectral simulation program (version 1.5). SRI international report MP 99 Luque J, Crosley DR (1999) LIFBASE: Database and spectral simulation program (version 1.5). SRI international report MP 99
go back to reference Maiti S, Jayaramudu J, Das K, Reddy SM, Sadiku R, Ray SS, Liu D (2013) Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr Polym 98:562–567PubMedCrossRef Maiti S, Jayaramudu J, Das K, Reddy SM, Sadiku R, Ray SS, Liu D (2013) Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr Polym 98:562–567PubMedCrossRef
go back to reference Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci B Polym Phys 52:791–806CrossRef Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci B Polym Phys 52:791–806CrossRef
go back to reference Matouk Z, Torriss B, Rincón R, Dorris A, Beck S, Berry RM, Chaker M (2020) Functionalization of cellulose nanocrystal films using Non-Thermal atmospheric-Pressure plasmas. Appl Surf Sci 511:145566CrossRef Matouk Z, Torriss B, Rincón R, Dorris A, Beck S, Berry RM, Chaker M (2020) Functionalization of cellulose nanocrystal films using Non-Thermal atmospheric-Pressure plasmas. Appl Surf Sci 511:145566CrossRef
go back to reference Mukhopadhyay SM, Joshi P, Datta S, Zhao J, France P (2002) Plasma assisted hydrophobic coatings on porous materials: influence of plasma parameters. J Phys d: Appl Phys 35:1927CrossRef Mukhopadhyay SM, Joshi P, Datta S, Zhao J, France P (2002) Plasma assisted hydrophobic coatings on porous materials: influence of plasma parameters. J Phys d: Appl Phys 35:1927CrossRef
go back to reference Oguzlu H, Danumah C, Boluk Y (2017) Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr Opin Colloid Interface Sci 29:46–56CrossRef Oguzlu H, Danumah C, Boluk Y (2017) Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr Opin Colloid Interface Sci 29:46–56CrossRef
go back to reference Pejić BM, Kramar AD, Obradović BM, Kuraica MM, Žekić AA, Kostić MM (2020) Effect of plasma treatment on chemical composition, structure and sorption properties of lignocellulosic hemp fibers (Cannabis sativa L). Carbohydr. Polym. 236:116000PubMedCrossRef Pejić BM, Kramar AD, Obradović BM, Kuraica MM, Žekić AA, Kostić MM (2020) Effect of plasma treatment on chemical composition, structure and sorption properties of lignocellulosic hemp fibers (Cannabis sativa L). Carbohydr. Polym. 236:116000PubMedCrossRef
go back to reference Pichal J, Hladik J, Špatenka P (2009) Atmospheric-air plasma surface modification of polyethylene powder. Plasma Process Polym 6:148–153CrossRef Pichal J, Hladik J, Špatenka P (2009) Atmospheric-air plasma surface modification of polyethylene powder. Plasma Process Polym 6:148–153CrossRef
go back to reference Poaty B, Riedl B, Blanchet P, Blanchard V, Stafford L (2013) Improved water repellency of black spruce wood surfaces after treatment in carbon tetrafluoride plasmas. Wood Sci Technol 47:411–422CrossRef Poaty B, Riedl B, Blanchet P, Blanchard V, Stafford L (2013) Improved water repellency of black spruce wood surfaces after treatment in carbon tetrafluoride plasmas. Wood Sci Technol 47:411–422CrossRef
go back to reference Rincón R, Hendaoui A, De Matos J, Chaker M (2016) Synthesis of flat sticky hydrophobic carbon diamond-like films using atmospheric pressure Ar/CH4 dielectric barrier discharge. J Appl Phys 119:223303CrossRef Rincón R, Hendaoui A, De Matos J, Chaker M (2016) Synthesis of flat sticky hydrophobic carbon diamond-like films using atmospheric pressure Ar/CH4 dielectric barrier discharge. J Appl Phys 119:223303CrossRef
go back to reference Segal L, Creely J, Martin A Jr, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res j 29:786–794CrossRef Segal L, Creely J, Martin A Jr, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res j 29:786–794CrossRef
go back to reference Siró I, Kusano Y, Norrman K, Goutianos S, Plackett D (2013) Surface modification of nanofibrillated cellulose films by atmospheric pressure dielectric barrier discharge. J Adhes Sci Technol 27:294–308CrossRef Siró I, Kusano Y, Norrman K, Goutianos S, Plackett D (2013) Surface modification of nanofibrillated cellulose films by atmospheric pressure dielectric barrier discharge. J Adhes Sci Technol 27:294–308CrossRef
go back to reference Suchy M, Vuorinen T, Kontturi E (2010) Thermal degradation of cellulose nanocrystals deposited on different surfaces. Macromol Symp 294:51–57CrossRef Suchy M, Vuorinen T, Kontturi E (2010) Thermal degradation of cellulose nanocrystals deposited on different surfaces. Macromol Symp 294:51–57CrossRef
go back to reference Twomey B, Rahman M, Byrne G, Hynes A, O’Hare LA, O’Neill L, Dowling D (2008) Effect of plasma exposure on the chemistry and morphology of aerosol-assisted, plasma-deposited coatings. Plasma Process Polym 5:737–744CrossRef Twomey B, Rahman M, Byrne G, Hynes A, O’Hare LA, O’Neill L, Dowling D (2008) Effect of plasma exposure on the chemistry and morphology of aerosol-assisted, plasma-deposited coatings. Plasma Process Polym 5:737–744CrossRef
go back to reference Ventura C, Pinto F, Lourenço AF, Ferreira PJT, Louro H, Silva MJ (2020) On the toxicity of cellulose nanocrystals and nanofibrils in animal and cellular models. Cellulose 27:5509–5544CrossRef Ventura C, Pinto F, Lourenço AF, Ferreira PJT, Louro H, Silva MJ (2020) On the toxicity of cellulose nanocrystals and nanofibrils in animal and cellular models. Cellulose 27:5509–5544CrossRef
go back to reference Viet D, Beck-Candanedo S, Gray DG (2007) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14:109–113CrossRef Viet D, Beck-Candanedo S, Gray DG (2007) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14:109–113CrossRef
go back to reference Wang Q et al (2013) A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem a 22:6678–6686CrossRef Wang Q et al (2013) A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem a 22:6678–6686CrossRef
go back to reference Wang Z et al (2019) Preparation of nanocellulose/filter paper (NC/FP) composite membranes for high-performance filtration. Cellulose 26:1183–1194CrossRef Wang Z et al (2019) Preparation of nanocellulose/filter paper (NC/FP) composite membranes for high-performance filtration. Cellulose 26:1183–1194CrossRef
go back to reference Wei J, Geng S, Hedlund J, Oksman K (2020) Lightweight, flexible, and multifunctional anisotropic nanocellulose-based aerogels for CO2 adsorption. Cellulose 27:2695–2707CrossRef Wei J, Geng S, Hedlund J, Oksman K (2020) Lightweight, flexible, and multifunctional anisotropic nanocellulose-based aerogels for CO2 adsorption. Cellulose 27:2695–2707CrossRef
go back to reference Wolf RA (2012) Atmospheric pressure plasma for surface modification. John Wiley & SonsCrossRef Wolf RA (2012) Atmospheric pressure plasma for surface modification. John Wiley & SonsCrossRef
go back to reference Yin Y et al (2019) Characterization of coals and coal ashes with high Si content using combined second-derivative infrared spectroscopy and raman spectroscopy. Curr Comput-Aided Drug Des 9:513 Yin Y et al (2019) Characterization of coals and coal ashes with high Si content using combined second-derivative infrared spectroscopy and raman spectroscopy. Curr Comput-Aided Drug Des 9:513
go back to reference Yu L, Lin J, Tian F, Li X, Bian F, Wang J (2014) Cellulose nanofibrils generated from jute fibers with tunable polymorphs and crystallinity. J Mater Chem A 2:6402–6411CrossRef Yu L, Lin J, Tian F, Li X, Bian F, Wang J (2014) Cellulose nanofibrils generated from jute fibers with tunable polymorphs and crystallinity. J Mater Chem A 2:6402–6411CrossRef
Metadata
Title
Functionalization of cellulose nanocrystal powder by non-thermal atmospheric-pressure plasmas
Authors
Zineb Matouk
Rocío Rincón
Badr Torriss
Amir Mirzaei
Joëlle Margot
Annie Dorris
Stephanie Beck
Richard M. Berry
Mohamed Chaker
Publication date
26-05-2021
Publisher
Springer Netherlands
Published in
Cellulose / Issue 10/2021
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-03927-2

Other articles of this Issue 10/2021

Cellulose 10/2021 Go to the issue