Skip to main content
Top

2021 | OriginalPaper | Chapter

Fundamental Combustion Research Challenged to Meet Designers’ Expectations

Authors : Hukam C. Mongia, Kumud Ajmani, Chih-Jen Sung

Published in: Sustainable Development for Energy, Power, and Propulsion

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Authors in recent publications shared their personal “gripe” for the modeling capabilities not reasonably calibrated before the start of their application in gas turbine combustion technology programs conducted since 1973. Concurrently, the supporting fundamental research results did not provide the insight needed for making critical design decisions during the technology and/or product development phase. Therefore, a joint effort was kicked off in 2012 on fundamental research to gauge what it takes to calibrate or validate the models while in parallel support hypothesis-based technology development approach specifically targeted for developing swirl-venturi lean direct injection (SV-LDI) technology. As summarized in this paper, based on this pilot project’s output to date, for a properly formulated applicable fundamental research with limited resources, it takes much longer than what Mongia had wished for since 1973.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mongia HC, Smith KF (1978) An empirical/analytical design methodology for gas turbine combustor. AIAA 1978-998 Mongia HC, Smith KF (1978) An empirical/analytical design methodology for gas turbine combustor. AIAA 1978-998
2.
go back to reference Mongia HC, Reynolds RS, Srinivasan R (1986) Multidimensional gas turbine combustion modeling: applications and limitations. AIAA J 24(6):890–904CrossRef Mongia HC, Reynolds RS, Srinivasan R (1986) Multidimensional gas turbine combustion modeling: applications and limitations. AIAA J 24(6):890–904CrossRef
3.
go back to reference Mongia HC (1993) Application of CFD in combustor design technology. AGARD CP-536, pp 12–1/12–18 Mongia HC (1993) Application of CFD in combustor design technology. AGARD CP-536, pp 12–1/12–18
4.
go back to reference Danis AM, Burrus DL, Mongia HC (1996) Anchored CCD for gas turbine combustor design and data correlation. ASME 1996-GT-143 Danis AM, Burrus DL, Mongia HC (1996) Anchored CCD for gas turbine combustor design and data correlation. ASME 1996-GT-143
5.
go back to reference Hura HS, Joshi ND, Mongia HC (1998) Dry low emissions premixer CCD modeling and validation. ASME 1998-GT-444 Hura HS, Joshi ND, Mongia HC (1998) Dry low emissions premixer CCD modeling and validation. ASME 1998-GT-444
6.
go back to reference Hura HS, Mongia HC (1998) Prediction of NO emissions from a lean dome gas turbine combustor. AIAA 1998-3375 Hura HS, Mongia HC (1998) Prediction of NO emissions from a lean dome gas turbine combustor. AIAA 1998-3375
7.
go back to reference Mongia HC (2008) Recent progress in comprehensive modeling of gas turbine combustion. AIAA 2008–1445 Mongia HC (2008) Recent progress in comprehensive modeling of gas turbine combustion. AIAA 2008–1445
8.
go back to reference Mongia HC (2001) A synopsis of gas turbine combustor design methodology evolution of last 25 Years. In: 15th international symposium on air breathing engines, ISABE-2001-1086 Mongia HC (2001) A synopsis of gas turbine combustor design methodology evolution of last 25 Years. In: 15th international symposium on air breathing engines, ISABE-2001-1086
9.
go back to reference Mongia HC (2001) Gas turbine combustor liner wall temperature calculation methodology. AIAA 2001-3267 Mongia HC (2001) Gas turbine combustor liner wall temperature calculation methodology. AIAA 2001-3267
10.
go back to reference Mongia, HC (2003) TAPS –A fourth generation propulsion combustor technology for low emissions. AIAA 2003–2657 Mongia, HC (2003) TAPS –A fourth generation propulsion combustor technology for low emissions. AIAA 2003–2657
11.
go back to reference Mongia HC, Ajmani K, Sung CJ (2019) Hypotheses driven combustion technology and design development approach pursued since early 1970s. 50 years of CFD in engineering sciences: a commemorative volume in memory of D. Brian Spalding. Runchal A (ed) Mongia HC, Ajmani K, Sung CJ (2019) Hypotheses driven combustion technology and design development approach pursued since early 1970s. 50 years of CFD in engineering sciences: a commemorative volume in memory of D. Brian Spalding. Runchal A (ed)
12.
go back to reference Kim WW, Menon S, Mongia HC (1999) Large eddy simulations of reacting flow in a dump combustor. Comb Sci Tech 143:25–62 Kim WW, Menon S, Mongia HC (1999) Large eddy simulations of reacting flow in a dump combustor. Comb Sci Tech 143:25–62
13.
go back to reference Grinstein FF, Young G, Gutmark EJ, Hsiao G, Mongia H (2002) Flow dynamics in a swirl combustor. J Turbul 3(30):1–19 Grinstein FF, Young G, Gutmark EJ, Hsiao G, Mongia H (2002) Flow dynamics in a swirl combustor. J Turbul 3(30):1–19
14.
go back to reference Wang S, Yang V, Hsiao G, Hsieh SY, Mongia HC (2007) Large eddy simulations of gas-turbine swirl injector flow dynamics. J Fluid Mech 583:99–122CrossRef Wang S, Yang V, Hsiao G, Hsieh SY, Mongia HC (2007) Large eddy simulations of gas-turbine swirl injector flow dynamics. J Fluid Mech 583:99–122CrossRef
15.
go back to reference Mongia H, Krishnaswami S, Sreedhar PSVS (2007) Comprehensive gas turbine combustion modeling methodology. In: Fluent’s Int aerospace CFD Conference, Paris Mongia H, Krishnaswami S, Sreedhar PSVS (2007) Comprehensive gas turbine combustion modeling methodology. In: Fluent’s Int aerospace CFD Conference, Paris
16.
go back to reference Sripathi M, Krishnaswami S, Danis AM, Hsieh SY (2014) Laminar flamelet based NOx predictions for gas turbine combustors. GT2014-27258 Sripathi M, Krishnaswami S, Danis AM, Hsieh SY (2014) Laminar flamelet based NOx predictions for gas turbine combustors. GT2014-27258
17.
go back to reference Tacina KM, Podboy DP, Lee FP, Dam B (2019) A third-generation swirl-venturi lean direct injection combustor with a prefilming pilot injector. GT2019-90484 Tacina KM, Podboy DP, Lee FP, Dam B (2019) A third-generation swirl-venturi lean direct injection combustor with a prefilming pilot injector. GT2019-90484
18.
go back to reference Gleason CC, Bahr DW (1979) Experimental clean combustor program. Phase III—final report. NASA CR-135384 Gleason CC, Bahr DW (1979) Experimental clean combustor program. Phase III—final report. NASA CR-135384
19.
go back to reference Tacina R, Lee P, Wey C (2005) A lean-direct-injection combustor using a 9-point swirl-venturi fuel injector. ISABE 2005-1106 Tacina R, Lee P, Wey C (2005) A lean-direct-injection combustor using a 9-point swirl-venturi fuel injector. ISABE 2005-1106
20.
go back to reference Tacina, KM, Chang, CT, He, ZJ, Lee, P, Dam, B, Mongia, HC (2014) A second-generation swirl-venturi lean direct injection combustion concept. AIAA 2014-3434 Tacina, KM, Chang, CT, He, ZJ, Lee, P, Dam, B, Mongia, HC (2014) A second-generation swirl-venturi lean direct injection combustion concept. AIAA 2014-3434
21.
go back to reference Tacina KM, Podboy DP, He ZJ, Lee P, Dam B, Mongia HC (2016) A comparison of three second-generation swirl-venturi lean direct injection combustor concepts. AIAA 2016-4891 Tacina KM, Podboy DP, He ZJ, Lee P, Dam B, Mongia HC (2016) A comparison of three second-generation swirl-venturi lean direct injection combustor concepts. AIAA 2016-4891
22.
go back to reference Ajmani K, Mongia HC, Lee P (2013) Evaluation of CFD best practices for combustor design: Part I—nonreacting flows. AIAA 2013-1144 Ajmani K, Mongia HC, Lee P (2013) Evaluation of CFD best practices for combustor design: Part I—nonreacting flows. AIAA 2013-1144
23.
go back to reference Ajmani K, Mongia HC, Lee P (2013) Evaluation of CFD best practices for combustor design: Part II—reacting flows. AIAA 2013-1143 Ajmani K, Mongia HC, Lee P (2013) Evaluation of CFD best practices for combustor design: Part II—reacting flows. AIAA 2013-1143
24.
go back to reference Ajmani K, Mongia HC, Lee P (2014) CFD computations of emissions for LDI-2 combustors with simplex and airblast injectors. AIAA 2014-3529 Ajmani K, Mongia HC, Lee P (2014) CFD computations of emissions for LDI-2 combustors with simplex and airblast injectors. AIAA 2014-3529
25.
go back to reference Ajmani K, Breisacher K (2014) Simulations of NOx emissions from low emissions discrete jet injector combustor tests. AIAA 2014-3524 Ajmani K, Breisacher K (2014) Simulations of NOx emissions from low emissions discrete jet injector combustor tests. AIAA 2014-3524
26.
go back to reference Ajmani K, Mongia HC, Lee P (2015) Parametric design of injectors for LDI-3 combustors. AIAA2015-3785 Ajmani K, Mongia HC, Lee P (2015) Parametric design of injectors for LDI-3 combustors. AIAA2015-3785
27.
go back to reference Ajmani K, Mongia HC, Lee P (2016) CFD based design of a filming injector for N + 3 combustors. AIAA2016-4783 Ajmani K, Mongia HC, Lee P (2016) CFD based design of a filming injector for N + 3 combustors. AIAA2016-4783
28.
go back to reference Ajmani K, Mongia HC, Lee P (2017) CFD evaluation of a 3rd generation LDI combustor. AIAA2017-5017 Ajmani K, Mongia HC, Lee P (2017) CFD evaluation of a 3rd generation LDI combustor. AIAA2017-5017
29.
go back to reference Ajmani K, Mongia HC, Lee P, Tacina KM (2018) CFD predictions of N + 3 cycle emissions for a three-cup gas-turbine combustor. AIAA2018-4957 Ajmani K, Mongia HC, Lee P, Tacina KM (2018) CFD predictions of N + 3 cycle emissions for a three-cup gas-turbine combustor. AIAA2018-4957
30.
go back to reference Swanson RC, Turkel E (1997) Multistage schemes with multigrid for Euler and Navier-Stokes equations. NASA TP-3631 Swanson RC, Turkel E (1997) Multistage schemes with multigrid for Euler and Navier-Stokes equations. NASA TP-3631
31.
go back to reference Shih T-H, Chen K-H, Liu N-S, Lumley JL (1998) Modeling of turbulent swirling flows. NASA-TM 1998-113112 Shih T-H, Chen K-H, Liu N-S, Lumley JL (1998) Modeling of turbulent swirling flows. NASA-TM 1998-113112
32.
go back to reference Shih T-H, Povinelli LA, Liu N-S, Chen K-H (2000) Generalized wall function for complex turbulent flows. NASA TM 2000-209936 Shih T-H, Povinelli LA, Liu N-S, Chen K-H (2000) Generalized wall function for complex turbulent flows. NASA TM 2000-209936
33.
go back to reference Liu N-S, Shih T-H, Wey CT (2011) Numerical simulations of two-phase reacting flow in a single-element lean direct injection (LDI) combustor using NCC. NASA/TM-2011-217031 Liu N-S, Shih T-H, Wey CT (2011) Numerical simulations of two-phase reacting flow in a single-element lean direct injection (LDI) combustor using NCC. NASA/TM-2011-217031
34.
go back to reference Ajmani K, Kundu K, Yungster S (2014) Evaluation of reduced mechanisms for combustion of Jet-A in LDI combustor CFD calculations. AIAA 2014-3662 Ajmani K, Kundu K, Yungster S (2014) Evaluation of reduced mechanisms for combustion of Jet-A in LDI combustor CFD calculations. AIAA 2014-3662
35.
go back to reference Raju MS (2012) LSPRAY-IV: a lagrangian spray module. NASA CR-2012-217294 Raju MS (2012) LSPRAY-IV: a lagrangian spray module. NASA CR-2012-217294
36.
go back to reference Banhawy YEl, Whitelaw JH (1980) Calculation of the flow properties of a confined kerosene-spray flame. AIAA J 18:1503–1510 Banhawy YEl, Whitelaw JH (1980) Calculation of the flow properties of a confined kerosene-spray flame. AIAA J 18:1503–1510
37.
go back to reference Raju MS (2004) Current status of the overall spray solution procedure (combined CFD/scalar-Monte-Carlo-PDF/spray computations) developed under NCC. AIAA 2004-0327 Raju MS (2004) Current status of the overall spray solution procedure (combined CFD/scalar-Monte-Carlo-PDF/spray computations) developed under NCC. AIAA 2004-0327
38.
go back to reference James S, Zhu J, Anand MS (2007) Large eddy simulations of turbulent flames using the filtered density function model. Proc Combust Inst 31:1737–1745CrossRef James S, Zhu J, Anand MS (2007) Large eddy simulations of turbulent flames using the filtered density function model. Proc Combust Inst 31:1737–1745CrossRef
39.
go back to reference Liu N-S, Wey CT (2014) On the TFNS subgrid models for liquid-fueled turbulent combustion. AIAA 2014-3569 Liu N-S, Wey CT (2014) On the TFNS subgrid models for liquid-fueled turbulent combustion. AIAA 2014-3569
40.
go back to reference Ren X, Xue X, Sung CJ, Brady KB, Mongia HC, Lee P (2016) The impact of venturi geometry on reacting flows in a swirl-venturi lean direct injection airblast injector. AIAA 2016-4650 Ren X, Xue X, Sung CJ, Brady KB, Mongia HC, Lee P (2016) The impact of venturi geometry on reacting flows in a swirl-venturi lean direct injection airblast injector. AIAA 2016-4650
41.
go back to reference Ren X, Xue X, Sung CJ, Brady KB, Mongia HC (2018) Fundamental investigations for lowering emissions and improving operability. Propul Power Re 7(3):197–204CrossRef Ren X, Xue X, Sung CJ, Brady KB, Mongia HC (2018) Fundamental investigations for lowering emissions and improving operability. Propul Power Re 7(3):197–204CrossRef
42.
go back to reference Ren X, Xue X, Brady KB, Sung CJ, Sung Mongia HC (2019) The impact of swirling flow strength on lean-dome LDI pilot mixers’ operability and emissions. Expe Therm Fluid Sci 109:109840 Ren X, Xue X, Brady KB, Sung CJ, Sung Mongia HC (2019) The impact of swirling flow strength on lean-dome LDI pilot mixers’ operability and emissions. Expe Therm Fluid Sci 109:109840
Metadata
Title
Fundamental Combustion Research Challenged to Meet Designers’ Expectations
Authors
Hukam C. Mongia
Kumud Ajmani
Chih-Jen Sung
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5667-8_11