Skip to main content
Top

2024 | OriginalPaper | Chapter

Fundamental Equations on Conformal Fedosov Spaces

Authors : Chakibek Almazbekov, Nadezda Guseva, Josef Mikeš

Published in: Differential Geometric Structures and Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present work is devoted to the study of the basic equations of conformally Fedosov structures. These equations are obtained in the form of closed linear equations in covariant derivatives of the Cauchy type. It is established that the general solution depends on no more than \(1/2n(n + 1)\) numerical parameters. The maximum is achieved in projectively Euclidean spaces. Estimates are found for these equations’ dependence on spaces that are not projectively Euclidean.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Almazbekov, Ch., Guseva, N.I. and Mikeš, J.: Conformal Fedosov structures and spaces. Preprint. 2023. Accepted in: Mat. zametki Almazbekov, Ch., Guseva, N.I. and Mikeš, J.: Conformal Fedosov structures and spaces. Preprint. 2023. Accepted in: Mat. zametki
2.
go back to reference Almazbekov, Ch., Mikeš, J. and Peška, P.: On the solutions of flat conformal Fedosov manifolds. Probl. Modern Math., 70th aniver. of A.A. Borubaev, June 15–19 (2021) Almazbekov, Ch., Mikeš, J. and Peška, P.: On the solutions of flat conformal Fedosov manifolds. Probl. Modern Math., 70th aniver. of A.A. Borubaev, June 15–19 (2021)
3.
4.
go back to reference Domashev, V.V. and Mikeš, J.: Theory of holomorphically projective mappings of Kählerian spaces. Math. Notes 23, 160–163 (1978)CrossRef Domashev, V.V. and Mikeš, J.: Theory of holomorphically projective mappings of Kählerian spaces. Math. Notes 23, 160–163 (1978)CrossRef
6.
go back to reference Eisenhart L.P.: Continuous groups of transformations. Princeton Univ. Press (1933) Eisenhart L.P.: Continuous groups of transformations. Princeton Univ. Press (1933)
7.
go back to reference Hinterleitner, I. and Mikeš, J.: Geodesic mappings onto Riemannian manifolds and differentiability Geometry, Integrability and Quantization 18, 183–190 (2017)CrossRef Hinterleitner, I. and Mikeš, J.: Geodesic mappings onto Riemannian manifolds and differentiability Geometry, Integrability and Quantization 18, 183–190 (2017)CrossRef
8.
go back to reference Hinterleitner, I. and Mikeš, J.: Geodesic mappings of (pseudo-)Riemannian manifolds preserve class of differentiability. Miskolc Math. Notes 14:2, 575–582 (2013)MathSciNetCrossRef Hinterleitner, I. and Mikeš, J.: Geodesic mappings of (pseudo-)Riemannian manifolds preserve class of differentiability. Miskolc Math. Notes 14:2, 575–582 (2013)MathSciNetCrossRef
10.
go back to reference Kanetov, B., Mikeš, J. and Askulova, Z.: Conformally Fedosov manifolds and geodesic mappings. AIP Conf. Proc. 2334, No. 020014 (2021) Kanetov, B., Mikeš, J. and Askulova, Z.: Conformally Fedosov manifolds and geodesic mappings. AIP Conf. Proc. 2334, No. 020014 (2021)
11.
go back to reference Kaushal, R., Kumar, R., Rani, R.: Harmonicity of slant conformal Riemannian maps. Math. Notes 113, No. 2, 243–254 (2023)MathSciNetCrossRef Kaushal, R., Kumar, R., Rani, R.: Harmonicity of slant conformal Riemannian maps. Math. Notes 113, No. 2, 243–254 (2023)MathSciNetCrossRef
12.
go back to reference Kirichenko, V.F. and Pol’kina, E.A.: Contact Lie form and concircular geometry of locally conformally quasi-Sasakian manifolds. Math. Notes 99, No. 1, 52–62 (2016)MathSciNetCrossRef Kirichenko, V.F. and Pol’kina, E.A.: Contact Lie form and concircular geometry of locally conformally quasi-Sasakian manifolds. Math. Notes 99, No. 1, 52–62 (2016)MathSciNetCrossRef
13.
go back to reference Kirichenko, V.F., Arsen’eva, O.E., Rustanov, A.R.: An example of a concircular vector field on a locally conformally Kähler manifold. Math. Notes 111, No. 4, 544–548 (2022)MathSciNetCrossRef Kirichenko, V.F., Arsen’eva, O.E., Rustanov, A.R.: An example of a concircular vector field on a locally conformally Kähler manifold. Math. Notes 111, No. 4, 544–548 (2022)MathSciNetCrossRef
14.
15.
go back to reference Lee, H.C.: A kind of even-dimensional differential geometry and its application to exterior calculus. Amer. J. Math. 65, 433–438 (1943)MathSciNetCrossRef Lee, H.C.: A kind of even-dimensional differential geometry and its application to exterior calculus. Amer. J. Math. 65, 433–438 (1943)MathSciNetCrossRef
16.
go back to reference Mikeš, J. and Moldobaev, Dz.: On some algebraic properties of tensors. In: Issled. po Neevklid. Geom., Kirghyz. Univ., Frunze, 60–64 (1982) Mikeš, J. and Moldobaev, Dz.: On some algebraic properties of tensors. In: Issled. po Neevklid. Geom., Kirghyz. Univ., Frunze, 60–64 (1982)
17.
go back to reference Mikeš, J. et al.: Differential geometry of special mappings. Palacky Univ. Press, Olomouc (2019)CrossRef Mikeš, J. et al.: Differential geometry of special mappings. Palacky Univ. Press, Olomouc (2019)CrossRef
18.
go back to reference Mikeš, J., Berezovski, V.: Geodesic mappings of affine-connected spaces onto Riemannian spaces Colloq. Math. Soc. J. Bolyai, 56. Diff. Geom. Eger Hungary, 491–494 (1989) Mikeš, J., Berezovski, V.: Geodesic mappings of affine-connected spaces onto Riemannian spaces Colloq. Math. Soc. J. Bolyai, 56. Diff. Geom. Eger Hungary, 491–494 (1989)
19.
go back to reference Mikeš, J., Rýparová, L. and Chudá, H.: On the theory of rotary mappings. Math. Notes 104, No. 4, 617–620 (2018)MathSciNetCrossRef Mikeš, J., Rýparová, L. and Chudá, H.: On the theory of rotary mappings. Math. Notes 104, No. 4, 617–620 (2018)MathSciNetCrossRef
20.
go back to reference Peška, P., Jukl, M. and Mikeš. J.: Tensor decompositions and their properties. Mathematics 2023, 11 (17), 3638 Peška, P., Jukl, M. and Mikeš. J.: Tensor decompositions and their properties. Mathematics 2023, 11 (17), 3638
21.
go back to reference Schouten, J.A. and Struik, D.J.: Introduction into new methods in differential geometry. P. Noordhoff: Groningen, Germany, 1935 Schouten, J.A. and Struik, D.J.: Introduction into new methods in differential geometry. P. Noordhoff: Groningen, Germany, 1935
22.
go back to reference Sinyukov N.S.: Geodesic mappings of Riemannian spaces. Nauka, Moscow (1979) Sinyukov N.S.: Geodesic mappings of Riemannian spaces. Nauka, Moscow (1979)
23.
go back to reference Stepanov, S.E., Tsyganok, I.I.: Codazzi and Killing tensors on a complete Riemannian manifold. Math. Notes 109, No. 6, 932–939 (2021)MathSciNetCrossRef Stepanov, S.E., Tsyganok, I.I.: Codazzi and Killing tensors on a complete Riemannian manifold. Math. Notes 109, No. 6, 932–939 (2021)MathSciNetCrossRef
25.
go back to reference Weyl, H.: Raum. Zeit. Materie. Vorlesungen über allgemeine Relativitätstheorie. 3. Auflage, Berlin, 1919. Weyl, H.: Raum. Zeit. Materie. Vorlesungen über allgemeine Relativitätstheorie. 3. Auflage, Berlin, 1919.
Metadata
Title
Fundamental Equations on Conformal Fedosov Spaces
Authors
Chakibek Almazbekov
Nadezda Guseva
Josef Mikeš
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50586-7_10

Premium Partner