Skip to main content
Top
Published in:

2022 | OriginalPaper | Chapter

1. Fundamentals and Design Guides for Printed Flexible Electronics

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Three-dimensional (3D) printing, known as additive manufacturing, includes a family of technologies consisting of novel ink materials, flexible substrates, and unique processing methods that can be integrated to create flexible, stretchable, and wearable electronics. These technologies can be used to fabricate components and full systems mainly in a layer-by-layer manner and offer various options regarding cost, feature details, and organic and inorganic materials. The most popular materials are printable organic, inorganic, and hybrid semiconductors with various functional structures (i.e., 1D, 2D and 3D, even 4D), including polymers, metals, composites, ceramics, and nanomaterials. 3D printing enables the creation of complex geometric shapes and merging of selected functional components into any configuration thus supplying an innovative approach for the fabrication of multifunctional end-use devices that can potentially combine mechanical, optical, chemical, electronic, electromagnetic, fluidic, thermal, and acoustic features. On the other hand, rapid advances in modern electronics place ever-accelerating demands on innovation towards more robust and versatile functional components. In the flexible electronics domain, novel material solutions often involve creative uses of common materials to reduce cost, while maintaining uncompromised performance. Moreover, mechanically durable and highly stretchable materials are fundamentally important to the development of flexible and stretchable devices. Therefore, there has been enormous progress in the materials, designs, and associated assembly techniques as well as manufacturing processes for flexible/stretchable electronic systems and subcomponents, such as transistors, amplifiers, sensors, actuators, light-emitting diodes, photodetector arrays, photovoltaics, energy generation and storage devices, and bare die integrated circuits. This chapter will highlight the fundamentals and design guides for 3D-printed flexible electronics, including historical perspectives, printing requirements for printable materials, design strategies, and advanced fabrication technologies for printed flexible electronics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Annett J, Cross GL (2016) Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate. Nature 535:271–275CrossRef Annett J, Cross GL (2016) Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate. Nature 535:271–275CrossRef
go back to reference Armillotta A (2006) Assessment of surface quality on textured FDM prototypes. Rapid Prototyp J 12:35–41CrossRef Armillotta A (2006) Assessment of surface quality on textured FDM prototypes. Rapid Prototyp J 12:35–41CrossRef
go back to reference Blaiszik B, Kramer S, Olugebefola S, Morre JS, Scottos NR, White SR (2010) Self-healing polymers and composites. Ann Rev Mater Res 40:179–211 Blaiszik B, Kramer S, Olugebefola S, Morre JS, Scottos NR, White SR (2010) Self-healing polymers and composites. Ann Rev Mater Res 40:179–211
go back to reference Chae SH, Yu WJ, Bae JJ, Duong DL, Perello D, Jeong HY, Ta QH, Ly TH, Vu QA, Yun M, Duan X, Lee YH (2013) Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat Mater 12(5):403–409CrossRef Chae SH, Yu WJ, Bae JJ, Duong DL, Perello D, Jeong HY, Ta QH, Ly TH, Vu QA, Yun M, Duan X, Lee YH (2013) Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat Mater 12(5):403–409CrossRef
go back to reference Chaney RL, Hackler DR, Wilson DG, Brian N (2013) Meek FleX™ Silicon-on-Polymer™: flexible (pliable) ICs from commercial foundry processes. http://www.americansemi.com/uploads/8/5/5/7/85579512/gomac2013_31.2.pdf. Accessed 8 Feb 2018 Chaney RL, Hackler DR, Wilson DG, Brian N (2013) Meek FleX™ Silicon-on-Polymer™: flexible (pliable) ICs from commercial foundry processes. http://​www.​americansemi.​com/​uploads/​8/​5/​5/​7/​85579512/​gomac2013_​31.​2.​pdf.​ Accessed 8 Feb 2018
go back to reference Chang J, He J, Mao M, Zhou W, Lei Q, Li X, Li D, Chua C-K, Zhao X (2018) Advanced material strategies for next-generation additive manufacturing. Materials 11:166CrossRef Chang J, He J, Mao M, Zhou W, Lei Q, Li X, Li D, Chua C-K, Zhao X (2018) Advanced material strategies for next-generation additive manufacturing. Materials 11:166CrossRef
go back to reference Choi S, Lee H, Ghaffari R, Hyeon T, Kim D-H (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28(22):4203–4218CrossRef Choi S, Lee H, Ghaffari R, Hyeon T, Kim D-H (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28(22):4203–4218CrossRef
go back to reference Coombs CF (1996) Printed circuits handbook. McGraw-Hill, New York Coombs CF (1996) Printed circuits handbook. McGraw-Hill, New York
go back to reference Dang W, Vinciguerra V, Lorenzelli L, Dahiya R (2017) Printable stretchable interconnects. Flex Print Electron 2:013003CrossRef Dang W, Vinciguerra V, Lorenzelli L, Dahiya R (2017) Printable stretchable interconnects. Flex Print Electron 2:013003CrossRef
go back to reference Daniel JH (2010) Printed electronics: technologies, challenges and applications. International workshop on flexible and printed electronics (IWFPE 10), Sept 8–10, Muju Resort, Korea Daniel JH (2010) Printed electronics: technologies, challenges and applications. International workshop on flexible and printed electronics (IWFPE 10), Sept 8–10, Muju Resort, Korea
go back to reference Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40:395–414CrossRef Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40:395–414CrossRef
go back to reference Eckstein R (2016) Aerosol jet printed electronic devices and systems. PhD dissertation, Karlsruhe Institute of Technology, Karlsruhe, Baden-Württemberg, Germany Eckstein R (2016) Aerosol jet printed electronic devices and systems. PhD dissertation, Karlsruhe Institute of Technology, Karlsruhe, Baden-Württemberg, Germany
go back to reference Eom SH, Park H, Mujawar SH, Yoon SC, Kim S-S, Na S-I, Kang S-J, Khim D, Kim D-Y, Lee S-H (2010) High efficiency polymer solar cells via sequential inkjet-printing of PEDOT:PSS and P3HT:PCBM inks with additives. Org Electron 11:1516–1522CrossRef Eom SH, Park H, Mujawar SH, Yoon SC, Kim S-S, Na S-I, Kang S-J, Khim D, Kim D-Y, Lee S-H (2010) High efficiency polymer solar cells via sequential inkjet-printing of PEDOT:PSS and P3HT:PCBM inks with additives. Org Electron 11:1516–1522CrossRef
go back to reference Fan JA, Yeo WH, Su Y, Hattori Y, Lee W, Jung SY, Zhang Y, Liu Z, Cheng H, Falgout L, Bajema M, Coleman T, Gregoire D, Larsen RJ, Huang Y, Rogers JA (2014) Fractal design concepts for stretchable electronics. Nat Commun 5:3266CrossRef Fan JA, Yeo WH, Su Y, Hattori Y, Lee W, Jung SY, Zhang Y, Liu Z, Cheng H, Falgout L, Bajema M, Coleman T, Gregoire D, Larsen RJ, Huang Y, Rogers JA (2014) Fractal design concepts for stretchable electronics. Nat Commun 5:3266CrossRef
go back to reference Guo Y, Patanwala HS, Bognet B, Ma AWK (2017) Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance. Rapid Prototyp J 23(3):562–576CrossRef Guo Y, Patanwala HS, Bognet B, Ma AWK (2017) Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance. Rapid Prototyp J 23(3):562–576CrossRef
go back to reference Hecht DS, Hu L, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23:1482CrossRef Hecht DS, Hu L, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23:1482CrossRef
go back to reference Hu L, Hecht DS, Grüner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110:5790CrossRef Hu L, Hecht DS, Grüner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110:5790CrossRef
go back to reference Huang W et al (2012) On-chip inductors with self-rolled-up SiNx nanomembrane tubes: a novel design platform for extreme miniaturization. Nano Lett 12:6283–6288CrossRef Huang W et al (2012) On-chip inductors with self-rolled-up SiNx nanomembrane tubes: a novel design platform for extreme miniaturization. Nano Lett 12:6283–6288CrossRef
go back to reference Jones J, Lacour SP, Wagner S, Suo ZG (2004) Stretchable wavy metal interconnects. J Vac Sci Technol A 22(4):1723–1725CrossRef Jones J, Lacour SP, Wagner S, Suo ZG (2004) Stretchable wavy metal interconnects. J Vac Sci Technol A 22(4):1723–1725CrossRef
go back to reference Kim S, Wu J, Carlson A, Jin SH, Kovalsky A, Glass P, Liu Z, Ahmed N, Elgan SL, Chen W, Ferreira PM, Sitti M, Huang Y, Rogers JA (2010) Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc Natl Acad Sci U S A 107(40):17095–17100CrossRef Kim S, Wu J, Carlson A, Jin SH, Kovalsky A, Glass P, Liu Z, Ahmed N, Elgan SL, Chen W, Ferreira PM, Sitti M, Huang Y, Rogers JA (2010) Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc Natl Acad Sci U S A 107(40):17095–17100CrossRef
go back to reference Kim J, Kumar R, Bandodkar AJ, Wang J (2017) Advanced materials for printed wearable electrochemical devices: a review. Adv Electron Mater 3:1600260CrossRef Kim J, Kumar R, Bandodkar AJ, Wang J (2017) Advanced materials for printed wearable electrochemical devices: a review. Adv Electron Mater 3:1600260CrossRef
go back to reference Ko H, Kapadia R, Takei K, Takahashi T, Zhang X, Javey A (2012) Multifunctional, flexible electronic systems based on engineered nanostructured materials. Nanotechnology 23(34):344001CrossRef Ko H, Kapadia R, Takei K, Takahashi T, Zhang X, Javey A (2012) Multifunctional, flexible electronic systems based on engineered nanostructured materials. Nanotechnology 23(34):344001CrossRef
go back to reference Lee J, Kim H-C, Choi J-W, Lee IH (2017) A review on 3D printed smart devices for 4D printing. Int J Precis Eng Manuf Green Technol 4(3):373–383CrossRef Lee J, Kim H-C, Choi J-W, Lee IH (2017) A review on 3D printed smart devices for 4D printing. Int J Precis Eng Manuf Green Technol 4(3):373–383CrossRef
go back to reference Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117:10212–10290CrossRef Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117:10212–10290CrossRef
go back to reference Lipomi DJ, Vosgueritchian M, Tee BC-K, Fox CH, Lee JA, Bao ZN (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6:788–792CrossRef Lipomi DJ, Vosgueritchian M, Tee BC-K, Fox CH, Lee JA, Bao ZN (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6:788–792CrossRef
go back to reference Lipomi DJ, Lee JA, Vosgueritchian M, Tee BC-K, Bolander JA, Bao ZN (2012) Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates. Chem Mater 24:373–382CrossRef Lipomi DJ, Lee JA, Vosgueritchian M, Tee BC-K, Bolander JA, Bao ZN (2012) Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates. Chem Mater 24:373–382CrossRef
go back to reference Loo Y-L, Ng TN (2013) Flexible electronics. In: Frontiers of engineering reports on leading-edge engineering from the 2013 symposium. National Academies Press, Washington, DC, pp 111–112 Loo Y-L, Ng TN (2013) Flexible electronics. In: Frontiers of engineering reports on leading-edge engineering from the 2013 symposium. National Academies Press, Washington, DC, pp 111–112
go back to reference Lopes AJ, Lee IH, MacDonald E, Quintana R, Wicker R (2014) Laser curing of silver-based conductive inks for in situ 3D structural electronics fabrication in stereolithography. J Mater Process Technol 214:1935–1945 Lopes AJ, Lee IH, MacDonald E, Quintana R, Wicker R (2014) Laser curing of silver-based conductive inks for in situ 3D structural electronics fabrication in stereolithography. J Mater Process Technol 214:1935–1945
go back to reference Mark JE (1999) Polymer data handbook. Oxford University Press, Oxford, UK Mark JE (1999) Polymer data handbook. Oxford University Press, Oxford, UK
go back to reference Maruo S, Fourkas JT (2008) Recent progress in multiphoton microfabrication. Laser Photonics Rev 2:100–111CrossRef Maruo S, Fourkas JT (2008) Recent progress in multiphoton microfabrication. Laser Photonics Rev 2:100–111CrossRef
go back to reference Münzenrieder N, Cantarella G, Vogt C, Petti L, Büthe L, Salvatore GA, Fang Y, Andri R, Lam Y, Libanori R, Widner D, Studart AR, Tröster G (2015) Stretchable and conformable oxide thin-film electronics. Adv Electron Mater 1:1400038CrossRef Münzenrieder N, Cantarella G, Vogt C, Petti L, Büthe L, Salvatore GA, Fang Y, Andri R, Lam Y, Libanori R, Widner D, Studart AR, Tröster G (2015) Stretchable and conformable oxide thin-film electronics. Adv Electron Mater 1:1400038CrossRef
go back to reference Nan K et al (2017) Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially nonuniform compressive buckling. Adv Funct Mater 27:1604281CrossRef Nan K et al (2017) Engineered elastomer substrates for guided assembly of complex 3D mesostructures by spatially nonuniform compressive buckling. Adv Funct Mater 27:1604281CrossRef
go back to reference Odom SA, Chayanupatkul S, Blaiszik BJ, Zhao O, Jackson AC, Braun PV, Sottos NR, White SR, Moore JS (2012) A self-healing conductive ink. Adv Mater 24:2578–2581CrossRef Odom SA, Chayanupatkul S, Blaiszik BJ, Zhao O, Jackson AC, Braun PV, Sottos NR, White SR, Moore JS (2012) A self-healing conductive ink. Adv Mater 24:2578–2581CrossRef
go back to reference Oropallo W, Piegl LA (2016) Ten challenges in 3D printing. Eng Comput 32(1):135–148CrossRef Oropallo W, Piegl LA (2016) Ten challenges in 3D printing. Eng Comput 32(1):135–148CrossRef
go back to reference Pandey PM, Reddy NV, Dhande SG (2003) Slicing procedures in layered manufacturing: a review. Rapid Prototyp J 9(5):274–288CrossRef Pandey PM, Reddy NV, Dhande SG (2003) Slicing procedures in layered manufacturing: a review. Rapid Prototyp J 9(5):274–288CrossRef
go back to reference Printz AD, Savagatrup S, Burke DJ, Purdy TN, Lipomi DJ (2014) Increased elasticity of a low-bandgap conjugated copolymer by random segmentation for mechanically robust solar cells. RSC Adv 4:13635–13643CrossRef Printz AD, Savagatrup S, Burke DJ, Purdy TN, Lipomi DJ (2014) Increased elasticity of a low-bandgap conjugated copolymer by random segmentation for mechanically robust solar cells. RSC Adv 4:13635–13643CrossRef
go back to reference Rim YS, Bae S-H, Chen H, Marco ND, Yang Y (2016) Recent progress in materials and devices toward printable and flexible sensors. Adv Mater 28:4415–4440CrossRef Rim YS, Bae S-H, Chen H, Marco ND, Yang Y (2016) Recent progress in materials and devices toward printable and flexible sensors. Adv Mater 28:4415–4440CrossRef
go back to reference Sankir ND (2005) Flexible electronics: materials and device fabrication. PhD dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia Sankir ND (2005) Flexible electronics: materials and device fabrication. PhD dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
go back to reference Savagatrup S, Printz AD, O’Connor TF, Zaretski AV, Lipomi DJ (2014) Molecularly stretchable electronics. Chem Mater 26(10):3028–3041CrossRef Savagatrup S, Printz AD, O’Connor TF, Zaretski AV, Lipomi DJ (2014) Molecularly stretchable electronics. Chem Mater 26(10):3028–3041CrossRef
go back to reference Stoppa M, Chiolerio A (2014) Wearable electronics and smart textiles: a critical review. Sensors 14:11957–11992CrossRef Stoppa M, Chiolerio A (2014) Wearable electronics and smart textiles: a critical review. Sensors 14:11957–11992CrossRef
go back to reference Sun H-B, Kawata S (2004) Two-photon photopolymerization and 3D lithographic microfabrication. APS 170:169–273 Sun H-B, Kawata S (2004) Two-photon photopolymerization and 3D lithographic microfabrication. APS 170:169–273
go back to reference Takahashi T, Takei K, Gillies AG, Fearing RS, Javey A (2011) Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett 11:5408–5413CrossRef Takahashi T, Takei K, Gillies AG, Fearing RS, Javey A (2011) Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett 11:5408–5413CrossRef
go back to reference Tibbits S (2014) 4D printing: multi-material shape change. Archit Design 84:116–121CrossRef Tibbits S (2014) 4D printing: multi-material shape change. Archit Design 84:116–121CrossRef
go back to reference Tong XC (2017) Functional metamaterials and metadevices. Springer, New York Tong XC (2017) Functional metamaterials and metadevices. Springer, New York
go back to reference Trung TQ, Lee N-E (2017) Materials and devices for transparent stretchable electronics. J Mater Chem C 5:2202–2222CrossRef Trung TQ, Lee N-E (2017) Materials and devices for transparent stretchable electronics. J Mater Chem C 5:2202–2222CrossRef
go back to reference Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A, Samulski ET, DeSimone JM (2015) Continuous liquid interface production of 3D objects. Science 347:1349–1352CrossRef Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A, Samulski ET, DeSimone JM (2015) Continuous liquid interface production of 3D objects. Science 347:1349–1352CrossRef
go back to reference Wang Q, Sun J, Yao Q et al (2018) 3D printing with cellulose materials. Cellulose 25:4275–4301CrossRef Wang Q, Sun J, Yao Q et al (2018) 3D printing with cellulose materials. Cellulose 25:4275–4301CrossRef
go back to reference Yang Y, Yang X, Tan Y, Yuan Q (2017) Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res 10(5):1560–1583CrossRef Yang Y, Yang X, Tan Y, Yuan Q (2017) Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res 10(5):1560–1583CrossRef
go back to reference Yang H, Leow WR, Chen X (2018) 3D printing of flexible electronic devices. Small Methods 2:1700259CrossRef Yang H, Leow WR, Chen X (2018) 3D printing of flexible electronic devices. Small Methods 2:1700259CrossRef
go back to reference Zhang Y, Zhang F, Yan Z, Ma Q, Li X, Huang Y, Rogers JA (2017) Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat Rev 2(4):17019 Zhang Y, Zhang F, Yan Z, Ma Q, Li X, Huang Y, Rogers JA (2017) Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat Rev 2(4):17019
go back to reference Zheng X, Smith W, Jackson J, Moran B, Cui H, Chen D, Spadaccini CM (2016) Multiscale metallic metamaterials. Nat Mater 15:1100–1106CrossRef Zheng X, Smith W, Jackson J, Moran B, Cui H, Chen D, Spadaccini CM (2016) Multiscale metallic metamaterials. Nat Mater 15:1100–1106CrossRef
go back to reference Zocchi G (2016) New developments in 3D printing of composites: photocurable resins for UV-assisted processes. Master thesis, Polytechnic University of Milan, Milan, Italy Zocchi G (2016) New developments in 3D printing of composites: photocurable resins for UV-assisted processes. Master thesis, Polytechnic University of Milan, Milan, Italy
Metadata
Title
Fundamentals and Design Guides for Printed Flexible Electronics
Author
Colin Tong
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-79804-8_1