Skip to main content
Top

2017 | OriginalPaper | Chapter

11. Fundamentals of Advanced Materials and Processes in Organic Substrate Technology

Authors : Songhua Shi, Peter Tortorici

Published in: 3D Microelectronic Packaging

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the past several decades, Moore’s law has successfully predicted integrated circuit (IC) technology advancement. However, IC technology began hitting both technology and cost barriers. Conventional die shrinkage and advanced deep-submicron semiconductor technology is no longer able to meet the cost-to-performance ratio that the world desires in the near future. Three-dimensional (3D) packaging has caught broad attention and is poised to help continue the Moore’s law by vertically integrating multiple IC chips into same footprint. In order to enable highly integrated 3D packaging, both the substrate and the printed wiring board (PWB) receiving the 3D package need to meet the signal and power density requirements. Substrate material and fabrication technologies play critical role in succeeding the future needs of smaller size, lower cost, and higher performance.
In this chapter, an overview of the substrate technology evolution in the past several decades will be discussed. The overview covers the substrates used in large varieties of packages, such as dual-in-line packages (DIP), quad flat package (QFP), area array package, and embedded wafer level ball grid array (eWLB) packages. The materials used in substrates will be discussed with a concentration on organic substrate materials. The discussion will cover key consideration points in material selection and application. The substrate fabrication technology will be also discussed in detail. The process technologies on the fabrication of cores, build-up dielectric layers, metal layers and traces, plated through holes (PTH) and vias, contact pads, solder mask, in addition to surface finishes will be covered. The general recommendation in selecting and applying the appropriate process technologies will be recommended.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I. Szendiuch, Development in electronic packaging—moving to 3D system configuration. Radioengineering 20(1), 214–220 (2011) I. Szendiuch, Development in electronic packaging—moving to 3D system configuration. Radioengineering 20(1), 214–220 (2011)
2.
go back to reference Y. Nakamura, S. Katogi, Technology trends and future history of semiconductor packaging substrate material, Hitachi Chemical Technical Report No. 55, Hitachi Chemical, 2013 Y. Nakamura, S. Katogi, Technology trends and future history of semiconductor packaging substrate material, Hitachi Chemical Technical Report No. 55, Hitachi Chemical, 2013
3.
go back to reference C.F. Coombs Jr., Printed Circuits Handbook, 6th edn. (McGraw-Hill, New York, 2008) C.F. Coombs Jr., Printed Circuits Handbook, 6th edn. (McGraw-Hill, New York, 2008)
4.
go back to reference M. Jassal, S. Ghosh, Aramid fibres—an overview. Indian J. Fibre Text. Res. 27, 290–306 (2002) M. Jassal, S. Ghosh, Aramid fibres—an overview. Indian J. Fibre Text. Res. 27, 290–306 (2002)
5.
go back to reference S. Bagen, D. Alcoe, F. D. Egitto, R. N. Das, G. Thomas, Advanced organic substrate technologies to enable extreme electronics miniaturization. Presented on IEEE Components, Packaging and Manufacturing Technology Chapter, Santa Clara Valley, Endicott Interconnect Technologies, New York, 13 Feb 2013 S. Bagen, D. Alcoe, F. D. Egitto, R. N. Das, G. Thomas, Advanced organic substrate technologies to enable extreme electronics miniaturization. Presented on IEEE Components, Packaging and Manufacturing Technology Chapter, Santa Clara Valley, Endicott Interconnect Technologies, New York, 13 Feb 2013
6.
go back to reference Design Guidelines 2013 (External) (DYCONEX, MST Company, Bassersdorf, Switzerland, 2013) Design Guidelines 2013 (External) (DYCONEX, MST Company, Bassersdorf, Switzerland, 2013)
7.
go back to reference S. Shi, Study on no-flow underfill materials for low-cost flip-chip applications, Ph.D. Thesis, Georgia Institute of Technology, 28 Mar 2000 S. Shi, Study on no-flow underfill materials for low-cost flip-chip applications, Ph.D. Thesis, Georgia Institute of Technology, 28 Mar 2000
8.
go back to reference R.R. Tummala, E.J. Rymaszewski, A.G. Klopfenstein, Microelectronics Packaging Handbook—Semiconductor Packaging, Part II, 2nd edn. (Kluwer Academic, Berlin, 1997)CrossRef R.R. Tummala, E.J. Rymaszewski, A.G. Klopfenstein, Microelectronics Packaging Handbook—Semiconductor Packaging, Part II, 2nd edn. (Kluwer Academic, Berlin, 1997)CrossRef
9.
go back to reference M.L. Minges, Electronic Materials Handbook: Packaging, vol 1 (ASM International, Novelty, OH, 1989) M.L. Minges, Electronic Materials Handbook: Packaging, vol 1 (ASM International, Novelty, OH, 1989)
10.
go back to reference M. Jawitz, in Printed Circuit Board Materials Handbook, ed. by M. Jawitz (McGraw-Hill, New York, 1997) M. Jawitz, in Printed Circuit Board Materials Handbook, ed. by M. Jawitz (McGraw-Hill, New York, 1997)
11.
go back to reference D.C. Thompson, O. Tantot, H. Jallageas, G.E. Ponchak, M.M. Tentzeris, J. Papapolymerou, Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz. IEEE Trans. Microwave Theory Tech. 52(4), 1343–1352 (2004)CrossRef D.C. Thompson, O. Tantot, H. Jallageas, G.E. Ponchak, M.M. Tentzeris, J. Papapolymerou, Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz. IEEE Trans. Microwave Theory Tech. 52(4), 1343–1352 (2004)CrossRef
12.
go back to reference N. Kingsley, Liquid crystal polymer: enabling next-generation conformal and multilayer electronics. Microwave J. 51(5), 188–200 (2008) N. Kingsley, Liquid crystal polymer: enabling next-generation conformal and multilayer electronics. Microwave J. 51(5), 188–200 (2008)
13.
go back to reference T. Shiraishi, K. Amami, Y. Bessho, K. Sakamaoto, K. Eda, T. Ishida, Flip chip MPU module using high performance printed circuit board “ALIVH”. Int. J. Microcircuits Electron. Packag. 21(2), 205–211 (1998) T. Shiraishi, K. Amami, Y. Bessho, K. Sakamaoto, K. Eda, T. Ishida, Flip chip MPU module using high performance printed circuit board “ALIVH”. Int. J. Microcircuits Electron. Packag. 21(2), 205–211 (1998)
14.
go back to reference IPC-HDBK-840, Solder Mask Handbook. (Association Connecting Electronics Industries (IPC), Bannockburn, IL, 2006) IPC-HDBK-840, Solder Mask Handbook. (Association Connecting Electronics Industries (IPC), Bannockburn, IL, 2006)
15.
go back to reference T. Nagoshi, S. Tanaka, K. Yoshizako, S. Fukuzumi, K. Kurafuchi, Photosensitive solder resist film for semiconductor package “FZ Series”, Hitachi Chemical Technical Report No. 54, Hitachi Chemical, 2012 T. Nagoshi, S. Tanaka, K. Yoshizako, S. Fukuzumi, K. Kurafuchi, Photosensitive solder resist film for semiconductor package “FZ Series”, Hitachi Chemical Technical Report No. 54, Hitachi Chemical, 2012
16.
go back to reference R.S. Khandpur, Printed Circuit Boards, Design Fabrication and Assembly and Testing (McGraw-Hill, New York, 2006) R.S. Khandpur, Printed Circuit Boards, Design Fabrication and Assembly and Testing (McGraw-Hill, New York, 2006)
17.
go back to reference K. Gileo, Printed Circuit Board (ET-Trends LLC, Port Orange, FL, 2014) K. Gileo, Printed Circuit Board (ET-Trends LLC, Port Orange, FL, 2014)
18.
go back to reference Recent Japanese Developments in Printed Wiring Boards for SMT, IEEE Electr. Insul. Mag. 7(2), 9–16 (1991) Recent Japanese Developments in Printed Wiring Boards for SMT, IEEE Electr. Insul. Mag. 7(2), 9–16 (1991)
19.
go back to reference Advanced Full Additive Process for High Density Printed Wiring Boards, in Japan IEMT Symposium, 1989, pp. 141–146 Advanced Full Additive Process for High Density Printed Wiring Boards, in Japan IEMT Symposium, 1989, pp. 141–146
20.
go back to reference D. Walsh, G. Milad, D. Gudeczauskas, Know your final finish options. Printed Circuit Des. Manuf. 23(2), 38 (2006) D. Walsh, G. Milad, D. Gudeczauskas, Know your final finish options. Printed Circuit Des. Manuf. 23(2), 38 (2006)
21.
Metadata
Title
Fundamentals of Advanced Materials and Processes in Organic Substrate Technology
Authors
Songhua Shi
Peter Tortorici
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-44586-1_11