Skip to main content
Top

2020 | OriginalPaper | Chapter

12. Future AM

The Next Generation of Additive Manufacturing Processes

Authors : Johannes Henrich Schleifenbaum, Prof., Christian Tenbrock, Msc., Claus Emmelmann, Prof., Christoph Leyens, Prof., Frank Brückner, Prof., Alexander Michaelis, Prof.

Published in: Biological Transformation

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Summary

Additive manufacturing (AM) is a technology with high disruptive potential that is currently undergoing heated discussion. The combination of Industry 4.0 and AM makes it possible to print industrial products directly based on digital data. This can result in sustainable change in industrial value creation chains throughout the whole spectrum of manufacturing engineering. Universities, research institutes and young companies recognized the potential of additive manufacturing processes at a very early stage and have developed them into marketable systems that have found their way from their applications in prototyping into the manufacture of end products. A new branch of industry has emerged that radiates throughout the entire value chain—from materials production and machine technology and additive manufacturing processes as a service up to the integration of additively manufactured components into new products.
There are still various “links” missing along the process chain, however, before the comprehensive and cross‐sector use of additive manufacturing processes can occur. These include universal data formats, the uninterrupted linking of digital and real process chains as well as concepts for the scalability of AM processes with regard to build rate and component size, so that production of larger quantities also becomes economically viable. Suitable concepts are also lacking for the manufacture of multi‐material components with AM‐adapted materials or the universal automation of the process chain up to and including the postprocessing of components.
Numerous initiatives are working on solving these problems. For example, in the “futureAM” focus project two strategic goals are being addressed, namely, securing and expanding Germany’s technological leadership in the area of metal AM, as well as establishing a comprehensive cooperation platform for highly integrated collaboration, which makes use of the decentrally distributed resources of the Fraunhofer‐Gesellschaft and interested partners in the field of AM. Technological leaps are needed to ensure this technological leadership and any significant further development. These required leaps in technology may be subdivided into four dimensions. Specifically, these are Industry 4.0 & the digital process chain, scalable & robust AM processes, materials and system engineering & automation.
The cooperation platform is not only created through the intensive collaboration within and between the individual fields of action, but especially through the development of a “Virtual Lab”. Out of this collaboration, with the participation of all partners and using the newly developed technologies, cross‐industry and cross‐sector demonstrators are built, which indeed come from a range of industrial sectors important to Germany.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Günnel T (2015) Jede Menge Pulver. Automobilindustrie 5:25ff Günnel T (2015) Jede Menge Pulver. Automobilindustrie 5:25ff
2.
go back to reference Wohlers T (2016) Wohlers Report 2016: 3D Printing and Additive Manufacturing State of the Industry – Annual Worldwide Progress Report Wohlers T (2016) Wohlers Report 2016: 3D Printing and Additive Manufacturing State of the Industry – Annual Worldwide Progress Report
3.
go back to reference Frost & Sullivan (2016) Global Metal Additive Manufacturing Market for Commercial Aviation. Frost & Sullivan (Eds), Mountain View Frost & Sullivan (2016) Global Metal Additive Manufacturing Market for Commercial Aviation. Frost & Sullivan (Eds), Mountain View
7.
go back to reference Hengesbach S, Poprawe R, Hoffmann D, Traub M, Schwarz Th, Holly C, Eibl F, Weisheit A, Vogt S, Britten S, Ungers M, Thombansen U, Engelmann Ch (2015) Brightness and average power as driver for advancements in diode lasers and their applications. Proc. SPIE 9348, High-Power Diode Laser Technology and Applications XIII:93480B Hengesbach S, Poprawe R, Hoffmann D, Traub M, Schwarz Th, Holly C, Eibl F, Weisheit A, Vogt S, Britten S, Ungers M, Thombansen U, Engelmann Ch (2015) Brightness and average power as driver for advancements in diode lasers and their applications. Proc. SPIE 9348, High-Power Diode Laser Technology and Applications XIII:93480B
8.
go back to reference Nolis P (2016) Low Cost SLM-Anlage mit Herstellungskosten von unter 20.000 €. formnext 2016, Fraunhofer ILT, Aachen, 27 November Nolis P (2016) Low Cost SLM-Anlage mit Herstellungskosten von unter 20.000 €. formnext 2016, Fraunhofer ILT, Aachen, 27 November
9.
go back to reference Zavala-Arredondo M, Boone N, Willmott J, Childs DTD, Ivanov P, Groom KM, Mumtaz K (2017) Laser diode area melting for high speed additive manufacturing of metallic components. Materials & Design 2017:305–315CrossRef Zavala-Arredondo M, Boone N, Willmott J, Childs DTD, Ivanov P, Groom KM, Mumtaz K (2017) Laser diode area melting for high speed additive manufacturing of metallic components. Materials & Design 2017:305–315CrossRef
10.
go back to reference Thombansen U, Abels P (2016) Observation of melting conditions in selective laser melting of metals (SLM). In: Proceedings of SPIE LASE, San Francisco, California, 13 February: 97410S Thombansen U, Abels P (2016) Observation of melting conditions in selective laser melting of metals (SLM). In: Proceedings of SPIE LASE, San Francisco, California, 13 February: 97410S
11.
go back to reference Thombansen U, Gatej A, Pereira M (2015) Process observation in fiber laser–based selective laser melting. Opt Eng 54 (1):1–7 Thombansen U, Gatej A, Pereira M (2015) Process observation in fiber laser–based selective laser melting. Opt Eng 54 (1):1–7
12.
go back to reference Krauss H, Zaeh MF (2013) Investigations on Manufacturability and Process Reliability of Selective Laser Melting. Phys Procedia 41:808–815CrossRef Krauss H, Zaeh MF (2013) Investigations on Manufacturability and Process Reliability of Selective Laser Melting. Phys Procedia 41:808–815CrossRef
13.
go back to reference Craeghs S, Clijsters S, Kruth J-P, Bechmann F, Ebert M-C (2012) Detection of Process Failures in Layerwise Laser Melting with Optical Process Monitoring. Phys Procedia 39:753–759CrossRef Craeghs S, Clijsters S, Kruth J-P, Bechmann F, Ebert M-C (2012) Detection of Process Failures in Layerwise Laser Melting with Optical Process Monitoring. Phys Procedia 39:753–759CrossRef
16.
go back to reference Everton S, Hirsch M, Stravroulakis P, Leach R, Clare A (2016) Review of in-situ process monitoring and in-situ metrology for metal addi-tive manufacturing. Materials and Design 95:431–445CrossRef Everton S, Hirsch M, Stravroulakis P, Leach R, Clare A (2016) Review of in-situ process monitoring and in-situ metrology for metal addi-tive manufacturing. Materials and Design 95:431–445CrossRef
17.
go back to reference Tapia G, Elwany A (2014) A review on process monitoring and control in metal-based additive manufacturing. J Manufacturing Sc and Eng 136:1–10 Tapia G, Elwany A (2014) A review on process monitoring and control in metal-based additive manufacturing. J Manufacturing Sc and Eng 136:1–10
18.
go back to reference Sing SL, Lam LP, Zhang DQ, Liu ZH, Chua CK (2015) Interfacial characterization of SLM parts in multi-material processing: Inter-metallic phase formation between AlSi10Mg and C18400 copper alloy. Materials Characterization 107:220–227CrossRef Sing SL, Lam LP, Zhang DQ, Liu ZH, Chua CK (2015) Interfacial characterization of SLM parts in multi-material processing: Inter-metallic phase formation between AlSi10Mg and C18400 copper alloy. Materials Characterization 107:220–227CrossRef
19.
go back to reference Al-Jamal OM, Hinduja S, Li L (2008) Characteristics of the bond in Cu-H13 tool steel parts fabricated using SLM. CIRP Annals – Manufacturing Technology 57(1):139–242CrossRef Al-Jamal OM, Hinduja S, Li L (2008) Characteristics of the bond in Cu-H13 tool steel parts fabricated using SLM. CIRP Annals – Manufacturing Technology 57(1):139–242CrossRef
20.
go back to reference Regenfuß P, Ebert R, Exner H (2007) Laser Micro Sintering: Versatile Instrument for the Generation of Microparts. Wiley-VCH, Weinheim Regenfuß P, Ebert R, Exner H (2007) Laser Micro Sintering: Versatile Instrument for the Generation of Microparts. Wiley-VCH, Weinheim
21.
go back to reference Ott M (2012) Multimaterialverarbeitung bei der additiven strahl- und pulverbettbasierten Fertigung. Dissertation, Technische Universität München Ott M (2012) Multimaterialverarbeitung bei der additiven strahl- und pulverbettbasierten Fertigung. Dissertation, Technische Universität München
24.
go back to reference Delfs P, Li Z, Schmid H-J (2015) Mass Finishing of Laser Sintered Parts. In: Proeedings Solid Freeform Fabrication Symposium, Austin, TX, p 514–526 Delfs P, Li Z, Schmid H-J (2015) Mass Finishing of Laser Sintered Parts. In: Proeedings Solid Freeform Fabrication Symposium, Austin, TX, p 514–526
25.
go back to reference Mognol P, Hascöet J-Y, Rivette M, Kerbrat O (2007) Evaluation of Hybrid Tooling with HSM-EDM-DMLS: Methods for Comparison of Time and Cost using Product Examples. Euro-uRapid 2007:183–188 Mognol P, Hascöet J-Y, Rivette M, Kerbrat O (2007) Evaluation of Hybrid Tooling with HSM-EDM-DMLS: Methods for Comparison of Time and Cost using Product Examples. Euro-uRapid 2007:183–188
27.
go back to reference Cremascoli P, Ohldin P (2009) Neue Hüftkappenprothese verbessert Einwachsen des Knochenmaterials. DeviceMed 5(4):20–21 Cremascoli P, Ohldin P (2009) Neue Hüftkappenprothese verbessert Einwachsen des Knochenmaterials. DeviceMed 5(4):20–21
Metadata
Title
Future AM
Authors
Johannes Henrich Schleifenbaum, Prof.
Christian Tenbrock, Msc.
Claus Emmelmann, Prof.
Christoph Leyens, Prof.
Frank Brückner, Prof.
Alexander Michaelis, Prof.
Copyright Year
2020
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-59659-3_12

Premium Partners