Skip to main content
Top

2022 | OriginalPaper | Chapter

2. Future Autonomous Transportation: Challenges and Prospective Dimensions

Authors : Muhammad Waseem Akhtar, Syed Ali Hassan

Published in: Intelligent Cyber-Physical Systems for Autonomous Transportation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Transportation is an integral and fundamental part of human beings’ lives. On Earth, we need transportation in the form of cars, buses, trains, etc. We need aircraft in the air and ships at sea for long-distance transportation. We need space shuttles in space to travel beyond the air. The main desire of human beings is to complete tasks with less energy, effort, time, and more security. The whole paradigm of humanity’s lifestyle can be shifted by autonomous transport (AT), which is already deployed in different technologically advanced countries. The Autonomous Transport System (ATS) is more secure and reliable than the current system of conventional transportation. With the aid of machine learning (ML), artificial intelligence (AI), and blockchain technologies, ultra-fast processing computers can make autonomous vehicles smarter, safer, and more secure than ever before. Connecting vehicles can communicate with the infrastructure to alert the driver about events such as when a train is coming, when a driver cannot see or hear the approaching train, etc. ATS can have a tremendous effect on all we do. However, there are certain challenges involved with every technology, and once we overcome these problems, these ATS can make life simpler, smarter, and safer. Furthermore, we discuss the challenges and future directions for the ATS.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Acheampong, R. A., Thomoupolos, N., Marten, K., Beyazıt, E., Cugurullo, F., & Dusparic, I. (2018). Literature review on the social challenges of autonomous transport. In STSM Report for COST Action CA16222” Wider Impacts and Scenario Evaluation of Autonomous and Connected Transport (WISE-ACT). Acheampong, R. A., Thomoupolos, N., Marten, K., Beyazıt, E., Cugurullo, F., & Dusparic, I. (2018). Literature review on the social challenges of autonomous transport. In STSM Report for COST Action CA16222” Wider Impacts and Scenario Evaluation of Autonomous and Connected Transport (WISE-ACT).
2.
go back to reference Akhtar, M. W., Hassan, S. A., Ghaffar, R., et al. (2020). The shift to 6G communications: Vision and requirements. Human-centric Computing and Information Sciences, 10(53). Akhtar, M. W., Hassan, S. A., Ghaffar, R., et al. (2020). The shift to 6G communications: Vision and requirements. Human-centric Computing and Information Sciences, 10(53).
3.
go back to reference Aujla, G. S., Singh, A., Singh, M., Sharma, S., Kumar, N., & Raymond Choo, K.-K. (2020). BloCkEd: Blockchain-based secure data processing framework in edge envisioned V2X environment. IEEE Transactions on Vehicular Technology, 69(6), 5850–5863.CrossRef Aujla, G. S., Singh, A., Singh, M., Sharma, S., Kumar, N., & Raymond Choo, K.-K. (2020). BloCkEd: Blockchain-based secure data processing framework in edge envisioned V2X environment. IEEE Transactions on Vehicular Technology, 69(6), 5850–5863.CrossRef
4.
go back to reference Aujla, G. S., Kumar, N., Garg, S., Kaur, K., et al. (2019). EDCSuS: Sustainable edge data centers as a service in SDN-enabled vehicular environment. IEEE Transactions on Sustainable Computing. Aujla, G. S., Kumar, N., Garg, S., Kaur, K., et al. (2019). EDCSuS: Sustainable edge data centers as a service in SDN-enabled vehicular environment. IEEE Transactions on Sustainable Computing.
5.
go back to reference Bagloee, S. A., Tavana, M., Asadi, M., & Oliver, T. (2016). Autonomous vehicles: challenges, opportunities, and future implications for transportation policies. Journal of Modern Transportation, 24(4), 284–303.CrossRef Bagloee, S. A., Tavana, M., Asadi, M., & Oliver, T. (2016). Autonomous vehicles: challenges, opportunities, and future implications for transportation policies. Journal of Modern Transportation, 24(4), 284–303.CrossRef
6.
go back to reference Board, N. S., National Research Council, et al. (2005). Autonomous Vehicles in Support of Naval Operations. National Academies Press. Board, N. S., National Research Council, et al. (2005). Autonomous Vehicles in Support of Naval Operations. National Academies Press.
7.
go back to reference Borcoci, E., Vochin, M., & Obreja, S. (2018). Mobile edge computing versus fog computing in internet of vehicles. In Proceedings of the 10th International Conference on Advances in Future Internet (pp. 8–15). Borcoci, E., Vochin, M., & Obreja, S. (2018). Mobile edge computing versus fog computing in internet of vehicles. In Proceedings of the 10th International Conference on Advances in Future Internet (pp. 8–15).
8.
go back to reference Cheema, M. A., Shehzad, M. K., Qureshi, H. K., et al. (2020). A drone-aided Blockchain-based smart vehicular network. IEEE Transactions on Intelligent Transportation Systems. Cheema, M. A., Shehzad, M. K., Qureshi, H. K., et al. (2020). A drone-aided Blockchain-based smart vehicular network. IEEE Transactions on Intelligent Transportation Systems.
9.
go back to reference Csiszár, C., & Földes, D. (2018). System model for autonomous road freight transportation. Promet-Traffic&Transportation, 30(1), 93–103.CrossRef Csiszár, C., & Földes, D. (2018). System model for autonomous road freight transportation. Promet-Traffic&Transportation, 30(1), 93–103.CrossRef
10.
go back to reference Elliott, D., Keen, W., & Miao, L. (2019). Recent advances in connected and automated vehicles. Journal of Traffic and Transportation Engineering (English Edition), 6(2), 109–131.CrossRef Elliott, D., Keen, W., & Miao, L. (2019). Recent advances in connected and automated vehicles. Journal of Traffic and Transportation Engineering (English Edition), 6(2), 109–131.CrossRef
11.
go back to reference Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77, 167–181. Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77, 167–181.
12.
go back to reference Finn, A., & Scheding, S. (2010). Developments and challenges for autonomous unmanned vehicles. Intelligent Systems Reference Library, 3, 128–154. Finn, A., & Scheding, S. (2010). Developments and challenges for autonomous unmanned vehicles. Intelligent Systems Reference Library, 3, 128–154.
13.
go back to reference Földes, D., & Csiszár, C. (2016). Passenger handling functions in autonomous public transportation. In 3rd International Conference on Traffic and Transport Engineering (ICTTE). Földes, D., & Csiszár, C. (2016). Passenger handling functions in autonomous public transportation. In 3rd International Conference on Traffic and Transport Engineering (ICTTE).
14.
go back to reference Foresti, G. L. (2001). Visual inspection of sea bottom structures by an autonomous underwater vehicle. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 31(5), 691–705.CrossRef Foresti, G. L. (2001). Visual inspection of sea bottom structures by an autonomous underwater vehicle. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 31(5), 691–705.CrossRef
15.
go back to reference Giang, N. K., Leung, V. C. M., & Lea, R. (2016). On developing smart transportation applications in fog computing paradigm. In Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications (pp. 91–98). Giang, N. K., Leung, V. C. M., & Lea, R. (2016). On developing smart transportation applications in fog computing paradigm. In Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications (pp. 91–98).
16.
go back to reference Hancock, P. A., Nourbakhsh, I., & Stewart, J. (2019). On the future of transportation in an era of automated and autonomous vehicles. Proceedings of the National Academy of Sciences, 116(16), 7684–7691.CrossRef Hancock, P. A., Nourbakhsh, I., & Stewart, J. (2019). On the future of transportation in an era of automated and autonomous vehicles. Proceedings of the National Academy of Sciences, 116(16), 7684–7691.CrossRef
17.
go back to reference Jameel, F., Chang, Z., Huang, J., & Ristaniemi, T. (2019). Internet of autonomous vehicles: architecture, features, and socio-technological challenges. IEEE Wireless Communications, 26(4), 21–29 (2019). Jameel, F., Chang, Z., Huang, J., & Ristaniemi, T. (2019). Internet of autonomous vehicles: architecture, features, and socio-technological challenges. IEEE Wireless Communications, 26(4), 21–29 (2019).
18.
go back to reference Johnson, C. (2017). Readiness of the road network for connected and autonomous vehicles. RAC Foundation: London. Johnson, C. (2017). Readiness of the road network for connected and autonomous vehicles. RAC Foundation: London.
19.
go back to reference Kim, T. J. (2018). Automated autonomous vehicles: Prospects and impacts on society. Journal of Transportation Technologies, 8(03), 137.CrossRef Kim, T. J. (2018). Automated autonomous vehicles: Prospects and impacts on society. Journal of Transportation Technologies, 8(03), 137.CrossRef
20.
go back to reference Kumar, V., & Michael, N. (2012). Opportunities and challenges with autonomous micro aerial vehicles. The International Journal of Robotics Research, 31(11), 1279–1291.CrossRef Kumar, V., & Michael, N. (2012). Opportunities and challenges with autonomous micro aerial vehicles. The International Journal of Robotics Research, 31(11), 1279–1291.CrossRef
21.
go back to reference Liu, S., Liu, L., Tang, J., Yu, B., Wang, Y., & Shi, W. (2019). Edge computing for autonomous driving: Opportunities and challenges. Proceedings of the IEEE, 107(8), 1697–1716.CrossRef Liu, S., Liu, L., Tang, J., Yu, B., Wang, Y., & Shi, W. (2019). Edge computing for autonomous driving: Opportunities and challenges. Proceedings of the IEEE, 107(8), 1697–1716.CrossRef
22.
go back to reference Lu, M., Wevers, K., & Van Der Heijden, R. (2005). Technical feasibility of advanced driver assistance systems (ADAS) for road traffic safety. Transportation Planning and Technology, 28(3), 167–187.CrossRef Lu, M., Wevers, K., & Van Der Heijden, R. (2005). Technical feasibility of advanced driver assistance systems (ADAS) for road traffic safety. Transportation Planning and Technology, 28(3), 167–187.CrossRef
23.
go back to reference Menouar, H., Guvenc, I., Akkaya, K.,Uluagac, A. S., Kadri, A., & Tuncer, A. (2017). UAV-enabled intelligent transportation systems for the smart city: Applications and challenges. IEEE Communications Magazine, 55(3), 22–28.CrossRef Menouar, H., Guvenc, I., Akkaya, K.,Uluagac, A. S., Kadri, A., & Tuncer, A. (2017). UAV-enabled intelligent transportation systems for the smart city: Applications and challenges. IEEE Communications Magazine, 55(3), 22–28.CrossRef
24.
go back to reference Muntaha, S. T., Hassan, S. A., Jung, H., et al. (2020). Energy efficiency and hover time optimization in UAV-Based HetNets. IEEE Transactions on Intelligent Transportation Systems. Muntaha, S. T., Hassan, S. A., Jung, H., et al. (2020). Energy efficiency and hover time optimization in UAV-Based HetNets. IEEE Transactions on Intelligent Transportation Systems.
25.
go back to reference Pines, D. J., & Bohorquez, F. (2006). Challenges facing future micro-air-vehicle development. Journal of Aircraft, 43(2), 290–305.CrossRef Pines, D. J., & Bohorquez, F. (2006). Challenges facing future micro-air-vehicle development. Journal of Aircraft, 43(2), 290–305.CrossRef
26.
go back to reference Saranti, P. G., Chondrogianni, D., & Karatzas, S. (2018). Autonomous vehicles and blockchain technology are shaping the future of transportation. In The 4th Conference on Sustainable Urban Mobility (pp. 797–803). Springer. Saranti, P. G., Chondrogianni, D., & Karatzas, S. (2018). Autonomous vehicles and blockchain technology are shaping the future of transportation. In The 4th Conference on Sustainable Urban Mobility (pp. 797–803). Springer.
27.
go back to reference Singh, A., Aujla, G. S., & Bali, R. S. (2020). Intent-based network for data dissemination in software-defined vehicular edge computing. IEEE Transactions on Intelligent Transportation Systems. Singh, A., Aujla, G. S., & Bali, R. S. (2020). Intent-based network for data dissemination in software-defined vehicular edge computing. IEEE Transactions on Intelligent Transportation Systems.
28.
go back to reference Smith, B. W. (2012). Managing autonomous transportation demand. Santa Clara Law Review, 52, 1401. Smith, B. W. (2012). Managing autonomous transportation demand. Santa Clara Law Review, 52, 1401.
29.
go back to reference Varlamov, O. O., Chuvikov, D. A., Aladin, D. V., Adamova, L. E., & Osipov, V. G. (2019). Logical artificial intelligence Mivar technologies for autonomous road vehicles. In IOP Conference Series: Materials Science and Engineering (vol. 534, pp. 012015). IOP Publishing. Varlamov, O. O., Chuvikov, D. A., Aladin, D. V., Adamova, L. E., & Osipov, V. G. (2019). Logical artificial intelligence Mivar technologies for autonomous road vehicles. In IOP Conference Series: Materials Science and Engineering (vol. 534, pp. 012015). IOP Publishing.
30.
go back to reference Yoerger, D. R., Jakuba, M., Bradley, A. M., & Bingham, B. (2007). Techniques for deep sea near bottom survey using an autonomous underwater vehicle. The International Journal of Robotics Research, 26(1), 41–54.CrossRef Yoerger, D. R., Jakuba, M., Bradley, A. M., & Bingham, B. (2007). Techniques for deep sea near bottom survey using an autonomous underwater vehicle. The International Journal of Robotics Research, 26(1), 41–54.CrossRef
31.
go back to reference Yuan, Y., & Wang, F.-Y. (2016). Towards blockchain-based intelligent transportation systems. In 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) (pp. 2663–2668). IEEE. Yuan, Y., & Wang, F.-Y. (2016). Towards blockchain-based intelligent transportation systems. In 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) (pp. 2663–2668). IEEE.
Metadata
Title
Future Autonomous Transportation: Challenges and Prospective Dimensions
Authors
Muhammad Waseem Akhtar
Syed Ali Hassan
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-92054-8_2

Premium Partner