Skip to main content
Top

2023 | OriginalPaper | Chapter

Future Technology and Research Trends in Automotive Sensing

Authors : Paul Schmalenberg, Jae S. Lee, Sean P. Rodrigues, Danil Prokhorov

Published in: AI-enabled Technologies for Autonomous and Connected Vehicles

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We discuss the importance of sensing technology in enabling intelligence of future automotive vehicles. We briefly overview efforts of leading technology companies such as Waymo and Tesla which resulted in impressive progress toward highest levels of driving automation. We then describe our efforts in the areas of future radars and lidars, specifically, those which go beyond 2D and mechanical scanning emphasizing importance of AI in improving sensor performance at marginal added cost. We then discuss trends in optical computing with its promise of substantially reducing energy consumption while enhancing edge computing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Urmson C et al (2008) Autonomous driving in urban environments: boss and the urban challenge. J Field Robot 25(8):425–466CrossRef Urmson C et al (2008) Autonomous driving in urban environments: boss and the urban challenge. J Field Robot 25(8):425–466CrossRef
9.
go back to reference Baum E (2004) What is Thought? The MIT Press Baum E (2004) What is Thought? The MIT Press
10.
go back to reference Prokhorov D (2019 July) Toward next generation of autonomous systems with AI. In: Proceedings of IJCNN 2019, Budapest, Hungary Prokhorov D (2019 July) Toward next generation of autonomous systems with AI. In: Proceedings of IJCNN 2019, Budapest, Hungary
11.
go back to reference Okumura B et al (2016) Challenges in perception and decision making for intelligent automotive vehicles: a case study. IEEE Trans Intell Veh 1(1):20–32CrossRef Okumura B et al (2016) Challenges in perception and decision making for intelligent automotive vehicles: a case study. IEEE Trans Intell Veh 1(1):20–32CrossRef
12.
go back to reference Iandolla F (2020, July 9) Is computer vision still improving… or has it Reached a Plateau? AutoSens 2020 Presentation Iandolla F (2020, July 9) Is computer vision still improving… or has it Reached a Plateau? AutoSens 2020 Presentation
13.
go back to reference Li J et al (2016) Deep neural network for structural prediction and lane detection in traffic scene. IEEE Trans Neural Netw Learn Syst 28(3):690–703CrossRef Li J et al (2016) Deep neural network for structural prediction and lane detection in traffic scene. IEEE Trans Neural Netw Learn Syst 28(3):690–703CrossRef
16.
go back to reference Li L, Ruan H, Liu C, Li Y, Shuang Y, Alù A, Cui, TJ et al (2019). Machine-learning reprogrammable metasurface imager. Nat Commun 10(1):1–8 Li L, Ruan H, Liu C, Li Y, Shuang Y, Alù A, Cui, TJ et al (2019). Machine-learning reprogrammable metasurface imager. Nat Commun 10(1):1–8
17.
go back to reference Ku BH, Schmalenberg P, Inac O, Gurbuz OD, Lee JS, Shiozaki K, Rebeiz GM (2014) A 77–81-GHz 16-Element Phased-Array Receiver With ±50 deg. Beam Scanning for Advanced Automotive Radars. IEEE Trans Microw Theory Tech 62(11):2823–2832 Ku BH, Schmalenberg P, Inac O, Gurbuz OD, Lee JS, Shiozaki K, Rebeiz GM (2014) A 77–81-GHz 16-Element Phased-Array Receiver With ±50 deg. Beam Scanning for Advanced Automotive Radars. IEEE Trans Microw Theory Tech 62(11):2823–2832
18.
go back to reference Schmalenberg PD, Li M, Lee JS (2019) U.S. Patent No. 10,333,209. Washington, DC: U.S. Patent and Trademark Office Schmalenberg PD, Li M, Lee JS (2019) U.S. Patent No. 10,333,209. Washington, DC: U.S. Patent and Trademark Office
19.
go back to reference Harris P, Malkowsky S, Vieira J, Bengtsson E, Tufvesson F, Hasan W. B, Edfors O et al (2017) Performance characterization of a real-time massive MIMO system with LOS mobile channels. IEEE J Sel Areas Commun 35(6):1244–1253 Harris P, Malkowsky S, Vieira J, Bengtsson E, Tufvesson F, Hasan W. B, Edfors O et al (2017) Performance characterization of a real-time massive MIMO system with LOS mobile channels. IEEE J Sel Areas Commun 35(6):1244–1253
20.
go back to reference Chen CY, Vaidyanathan PP (2008, May) Minimum redundancy MIMO radars. In: 2008 IEEE international symposium on circuits and systems. IEEE. pp 45–48 Chen CY, Vaidyanathan PP (2008, May) Minimum redundancy MIMO radars. In: 2008 IEEE international symposium on circuits and systems. IEEE. pp 45–48
21.
go back to reference Li Y, Luo Y, Yang G (2017) 12-port 5G massive MIMO antenna array in sub-6GHz mobile handset for LTE bands 42/43/46 applications. IEEE Access 6:344–354CrossRef Li Y, Luo Y, Yang G (2017) 12-port 5G massive MIMO antenna array in sub-6GHz mobile handset for LTE bands 42/43/46 applications. IEEE Access 6:344–354CrossRef
22.
go back to reference Heinemann B, Barth R, Bolze D, Drews J, Fischer GG, Fox A, Yamamoto Y (2010, December). SiGe HBT technology with f T/f max of 300GHz/500GHz and 2.0 ps CML gate delay. In: 2010 International Electron Devices Meeting. IEEE. pp 30–5 Heinemann B, Barth R, Bolze D, Drews J, Fischer GG, Fox A, Yamamoto Y (2010, December). SiGe HBT technology with f T/f max of 300GHz/500GHz and 2.0 ps CML gate delay. In: 2010 International Electron Devices Meeting. IEEE. pp 30–5
23.
go back to reference Ji Z, Prokhorov D (2008, June) Radar-vision fusion for object classification. In: 2008 11th International conference on information fusion. IEEE. pp 1–7 Ji Z, Prokhorov D (2008, June) Radar-vision fusion for object classification. In: 2008 11th International conference on information fusion. IEEE. pp 1–7
24.
go back to reference Prokhorov DV (2010, June) Road obstacle classification with attention windows. In: 2010 IEEE intelligent vehicles symposium. IEEE. pp 889–895 Prokhorov DV (2010, June) Road obstacle classification with attention windows. In: 2010 IEEE intelligent vehicles symposium. IEEE. pp 889–895
25.
go back to reference Prokhorov DV (2012) U.S. Patent No. 8,254,670. Washington, DC: U.S. Patent and Trademark Office Prokhorov DV (2012) U.S. Patent No. 8,254,670. Washington, DC: U.S. Patent and Trademark Office
26.
go back to reference Nobis F, Geisslinger M, Weber M, Betz J, Lienkamp M (2019, October) A deep learning-based radar and camera sensor fusion architecture for object detection. In: 2019 sensor data fusion: trends, solutions, applications (SDF). IEEE. pp 1–7 Nobis F, Geisslinger M, Weber M, Betz J, Lienkamp M (2019, October) A deep learning-based radar and camera sensor fusion architecture for object detection. In: 2019 sensor data fusion: trends, solutions, applications (SDF). IEEE. pp 1–7
27.
go back to reference Li X, Zhai W, Repeta M, Cai H, Ross T, Ansari K, Tong W (2021) A scalable 256-elements e-band phased-array transceiver for broadband communication. arXiv preprint arXiv:2106.10623 Li X, Zhai W, Repeta M, Cai H, Ross T, Ansari K, Tong W (2021) A scalable 256-elements e-band phased-array transceiver for broadband communication. arXiv preprint arXiv:2106.10623
28.
go back to reference Halterman R, Bruch M (2010, May) Velodyne HDL-64E lidar for unmanned surface vehicle obstacle detection. In: Unmanned systems technology XII. International Society for Optics and Photonics, vol 7692. p 76920D Halterman R, Bruch M (2010, May) Velodyne HDL-64E lidar for unmanned surface vehicle obstacle detection. In: Unmanned systems technology XII. International Society for Optics and Photonics, vol 7692. p 76920D
29.
go back to reference Fahrenkopf NM, McDonough C, Leake GL, Su Z, Timurdogan E, Coolbaugh DD (2019) The AIM photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J Sel Top Quantum Electron 25(5):1–6CrossRef Fahrenkopf NM, McDonough C, Leake GL, Su Z, Timurdogan E, Coolbaugh DD (2019) The AIM photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J Sel Top Quantum Electron 25(5):1–6CrossRef
30.
go back to reference Poulton CV, Byrd MJ, Moss B, Timurdogan E, Millman R, Watts MR (2020, May) 8192-element optical phased array with 100 steering range and flip-chip CMOS. In CLEO: Applications and Technology. Optical Society of America. pp JTh4A-3 Poulton CV, Byrd MJ, Moss B, Timurdogan E, Millman R, Watts MR (2020, May) 8192-element optical phased array with 100 steering range and flip-chip CMOS. In CLEO: Applications and Technology. Optical Society of America. pp JTh4A-3
31.
go back to reference Lukashchuk A, Riemensberger J, Karpov M, Liu J, Kippenberg TJ (2021) Hardware-efficient megapixel per second coherent soliton microcomb ranging. arXiv preprint arXiv:2101.03952 Lukashchuk A, Riemensberger J, Karpov M, Liu J, Kippenberg TJ (2021) Hardware-efficient megapixel per second coherent soliton microcomb ranging. arXiv preprint arXiv:2101.03952
32.
go back to reference Zhang C, Lindner S, Antolović IM, Pavia JM, Wolf M, Charbon E (2018) A 30-frames/s, 252 x 144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs, and pixel-wise integrated histogramming. IEEE J Solid-State Circuits 54(4):1137–1151 Zhang C, Lindner S, Antolović IM, Pavia JM, Wolf M, Charbon E (2018) A 30-frames/s, 252 x 144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs, and pixel-wise integrated histogramming. IEEE J Solid-State Circuits 54(4):1137–1151
34.
go back to reference Rogers C, Piggott AY, Thomson DJ, Wiser RF, Opris IE., Fortune SA, Nicolaescu R (2021) A universal 3D imaging sensor on a silicon photonics platform. Nature 590(7845):256–261 Rogers C, Piggott AY, Thomson DJ, Wiser RF, Opris IE., Fortune SA, Nicolaescu R (2021) A universal 3D imaging sensor on a silicon photonics platform. Nature 590(7845):256–261
35.
go back to reference Batet O, Dios F, Comeron A (2010, August) FMCW lidar for multiple-target sounding. In: Remote Sensing System Engineering III. International Society for Optics and Photonics, vol 7813. p 78130H Batet O, Dios F, Comeron A (2010, August) FMCW lidar for multiple-target sounding. In: Remote Sensing System Engineering III. International Society for Optics and Photonics, vol 7813. p 78130H
36.
go back to reference Yang X, Hao L, Wang H, Wang Y (2020) Spatial and temporal multiplexing array imaging lidar technique based on OOCDMA. Opt Lasers Eng 129:106066 Yang X, Hao L, Wang H, Wang Y (2020) Spatial and temporal multiplexing array imaging lidar technique based on OOCDMA. Opt Lasers Eng 129:106066
37.
go back to reference Prokhorov D (2010) A convolutional learning system for object classification in 3D lidar data. IEEE Trans Neural Netw 21(5):858–863CrossRef Prokhorov D (2010) A convolutional learning system for object classification in 3D lidar data. IEEE Trans Neural Netw 21(5):858–863CrossRef
38.
go back to reference Prokhorov D (2009) Object recognition in 3D lidar data with recurrent neural network. In: Proceedings of CVPR workshops, pp 9–15 Prokhorov D (2009) Object recognition in 3D lidar data with recurrent neural network. In: Proceedings of CVPR workshops, pp 9–15
40.
go back to reference Zhang J, Letaief KB (2020) Mobile edge intelligence and computing for the internet of vehicles. (Special Issue on Internet of Vehicles) Proc of IEEE 108(2):246–261 Zhang J, Letaief KB (2020) Mobile edge intelligence and computing for the internet of vehicles. (Special Issue on Internet of Vehicles) Proc of IEEE 108(2):246–261
42.
go back to reference Cordaro A et al (2019) High-index dielectric metasurfaces performing mathematical operations. Nano Lett 19:8418–8423CrossRef Cordaro A et al (2019) High-index dielectric metasurfaces performing mathematical operations. Nano Lett 19:8418–8423CrossRef
43.
go back to reference Guo C, Xiao M, Minkov M, Shi Y, Fan S (2018) Photonic crystal slab Laplace operator for image differentiation. Optica 5:251–256CrossRef Guo C, Xiao M, Minkov M, Shi Y, Fan S (2018) Photonic crystal slab Laplace operator for image differentiation. Optica 5:251–256CrossRef
45.
go back to reference Wang H, Guo C, Zhao Z, Fan S (2020) Compact incoherent image differentiation with nanophotonic structures. ACS Photonics 7:338–343CrossRef Wang H, Guo C, Zhao Z, Fan S (2020) Compact incoherent image differentiation with nanophotonic structures. ACS Photonics 7:338–343CrossRef
46.
go back to reference Estakhri NM, Edwards B, Engheta N (2021) Inverse-designed metastructures that solve equations. Science 363(6433):1333–1338MathSciNetCrossRef Estakhri NM, Edwards B, Engheta N (2021) Inverse-designed metastructures that solve equations. Science 363(6433):1333–1338MathSciNetCrossRef
52.
go back to reference Lima TF et al (2019) Machine learning with neuromorphic photonics. J Lightwave Technol 37(5):1515–1534CrossRef Lima TF et al (2019) Machine learning with neuromorphic photonics. J Lightwave Technol 37(5):1515–1534CrossRef
53.
go back to reference Dede E, et al (2021) Adaptable optical neural network system. US Patent Application No. 20210097378A1 Dede E, et al (2021) Adaptable optical neural network system. US Patent Application No. 20210097378A1
Metadata
Title
Future Technology and Research Trends in Automotive Sensing
Authors
Paul Schmalenberg
Jae S. Lee
Sean P. Rodrigues
Danil Prokhorov
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-06780-8_6

Premium Partner