Skip to main content
Top

2022 | OriginalPaper | Chapter

Future Threats to Connected and Automated Vehicles

Authors : Jonathan Petit, William Whyte

Published in: Road Vehicle Automation 8

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Automated Vehicles rely on intelligent systems to enable safe and efficient transportation. Thanks to robust perception and reliable communication, automated vehicles will reshape transportation services. However, the security of automated vehicles has to be guaranteed at the component level. In this chapter, we provide an overview of two threats to connected and automated vehicles (CAV), namely adversarial AI in perception system, and impact of Quantum Computer on CAV security.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Marti, E., de Miguel, M.A., Garcia, F., Perez, J.: A review of sensor technologies for perception in automated driving. IEEE Intell. Transp. Syst. Mag. 11(4), 94–108 (2019)CrossRef Marti, E., de Miguel, M.A., Garcia, F., Perez, J.: A review of sensor technologies for perception in automated driving. IEEE Intell. Transp. Syst. Mag. 11(4), 94–108 (2019)CrossRef
2.
go back to reference Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1625–1634 (2018) Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1625–1634 (2018)
3.
go back to reference Cao, Y., et al.: Adversarial objects against lidar-based autonomous driving systems. arXiv preprint arXiv:1907.05418 (2019) Cao, Y., et al.: Adversarial objects against lidar-based autonomous driving systems. arXiv preprint arXiv:1907.05418 (2019)
5.
go back to reference Ju, A., Wagner, D.: E-ABS: extending the analysis-by-synthesis robust classification model to more complex image domains. In: Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security, pp. 25–36 (2020) Ju, A., Wagner, D.: E-ABS: extending the analysis-by-synthesis robust classification model to more complex image domains. In: Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security, pp. 25–36 (2020)
6.
go back to reference Xiong, Z., Eappen, J., Zhu, H., Jagannathan, S.: Robustness to Adversarial Attacks in Learning-Enabled Controllers. arXiv preprint arXiv:2006.06861 (2020) Xiong, Z., Eappen, J., Zhu, H., Jagannathan, S.: Robustness to Adversarial Attacks in Learning-Enabled Controllers. arXiv preprint arXiv:2006.06861 (2020)
7.
go back to reference Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410–14430 (2018)CrossRef Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410–14430 (2018)CrossRef
Metadata
Title
Future Threats to Connected and Automated Vehicles
Authors
Jonathan Petit
William Whyte
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-80063-5_8

Premium Partner