Skip to main content
Top
Published in: MTZ worldwide 5/2017

01-05-2017 | Research

FVV Reports

Author: Petra Tutsch

Published in: MTZ worldwide | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Auszug

The scope of the FVV study was to assess a broad variety of current state-of-the-art technology solutions for reducing nitrogen oxide emissions of internal combustion engines by means of a comprehensive literature and patent review. The focus here was on increasing the conversion rates of aftertreatment systems effected at low exhaust gas temperatures. The potential NOx reduction measures had been divided into four different categories, i.e. "periphery", "catalysis", "preparation of reducing agent" and "engine internal measures". For each single solution, a detailed technology briefing including pros and cons was prepared to specify its purpose, its mode of operation and its integration into the IC engine system. The assessment of the emission reduction technologies together with their supporting measures was carried out with the help of systematically identified requirements on the engine system and respective boundary conditions. Basically, a distinction was made between the evaluation of the functionality of a technology and its system implementation. Low temperature activity, interaction with the environment, dynamics, long-term durability and the need for exhaust gas recirculation were chosen as essential criteria for assessing its functionality. The system performance of each single technology was assessed against criteria such as fuel consumption / CO2 balance, serviceability / health and safety, durability / robustness, environment, development effort, implementation effort and suitability for series production. In addition, all technology solutions were evaluated with a view to four different fields of IC engine application, as there are passenger cars, commercial vehicles, nonroad mobile machinery and lean-burn engine driven stationary installations. For this purpose, a reference system for each application was drawn up representing the current state of the art and serving as evaluation basis. Moreover, a series of technologies were identified that have the potential to further enhance the DeNOx performance and/or enlarge the working temperature range of a system. Upon completion of the project engine manufacturers, technology providers and research centres have access to a comprehensive common rating matrix plus inherent conclusions on a multitude of technologies enabling the researchers to work on different DeNOx solutions in the long term while pursuing individual development targets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Worldwide Automotive Package

We make your automotive knowledge compactly!

Get all the international automotive knowledge you need with the Worldwide Automotive Package.

You receive all Automotive Worldwide e-magazines with only one access for you and your colleagues.

Show more products
Metadata
Title
FVV Reports
Author
Petra Tutsch
Publication date
01-05-2017
Publisher
Springer Fachmedien Wiesbaden
Published in
MTZ worldwide / Issue 5/2017
Electronic ISSN: 2192-9114
DOI
https://doi.org/10.1007/s38313-017-0048-3

Other articles of this Issue 5/2017

MTZ worldwide 5/2017 Go to the issue

Premium Partner