Skip to main content
Top

2019 | OriginalPaper | Chapter

GA with SVM to Optimize the Dynamic Channel Assignment for Enhancing SIR in Cellular Networks

Authors : Sharada N. Ohatkar, Dattatraya S. Bormane

Published in: Advances in Signal Processing and Communication

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There is a reduction in the signal-to-noise ratio of cellular networks due to interference caused by assigning the channels to the cell. As the demand for connectivity is on rise with limited spectrum availability, the interference may increase, so channels are required to be assigned optimally. This work presents applying Genetic algorithm (GA) along with Support Vector Machine (SVM) to assigning the channels dynamically for reducing co-channel and co-site interference with constraints. In this paper, we propose to adopt the GA to solve the minimum interference channel assignment problem (MICAP) and the nonlinear dataset are best classified using SVM. The fitness function is designed using SVM and the optimization is done with GA with a focus on MICAP. The performance of the GA-SVM is enhanced SIR, reduces interference, and requires less computation time than the work reported by GA.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Literature
This content is only visible if you are logged in and have the appropriate permissions.
Metadata
Title
GA with SVM to Optimize the Dynamic Channel Assignment for Enhancing SIR in Cellular Networks
Authors
Sharada N. Ohatkar
Dattatraya S. Bormane
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-2553-3_8