Committing a slight abuse of notation we denote the restrictions of
\(F_A\),
\(\gamma \) and
\(\Phi _{\lambda ,\mu }\) to
\({\mathbb R}^2\) by the same symbols. For the first statement, we need to show for arbitrary
\(\tau \in {\mathbb R}^2\) that
$$ |{\mathcal {F}}[F_A \cdot \gamma (\cdot -\tau )](\xi )| \le K e^{-C|\xi |^2},\,\quad \xi \in {\mathbb R}^2. $$
Let
\(\lambda ,\mu \in {\mathbb R}^2\) be arbitrary but fixed. We set
$$ p =p(\lambda ,\mu )=\frac{4\lambda +4\mu +\tau }{9} \quad \text {and} \quad q=q(\lambda ,\mu )= \frac{\lambda +\mu -2\tau }{6}, $$
so that, after an elementary computation,
$$ \big ( x-\frac{\lambda +\mu }{2} \big )^2 + \frac{1}{8} \big ( x-\tau \big )^2 = \frac{9}{8}(x-p)^2 + q^2. $$
With this we rewrite
$$\begin{aligned} \Phi _{\lambda ,\mu }(x) \gamma (x-\tau )&= C(\lambda ,\mu ) e^{i\pi [\mathcal {J}(\lambda -\mu )]\cdot x}\cdot e^{-\pi \big (x-\frac{\lambda +\mu }{2} \big )^2} \cdot e^{-\frac{\pi }{8} (x-\tau )^2}\\&= C(\lambda ,\mu ) e^{-\pi q^2} \cdot \left( M_{\frac{1}{2} \mathcal {J}(\lambda -\mu )} T_p [e^{-\frac{9}{8} \pi \cdot ^2}]\right) (x). \end{aligned}$$
As
\({\mathcal {F}}[e^{-\frac{9}{8} \pi \cdot ^2}](\xi ) = \frac{8}{9} e^{-\frac{8\pi }{9} \xi ^2}\), we get that the Fourier transform of the above function is given by
$$\begin{aligned} {\mathcal {F}}[\Phi _{\lambda ,\mu }(\cdot ) \gamma (\cdot -\tau )] (\xi ) = \frac{8}{9} C(\lambda ,\mu ) e^{-\pi q^2} \cdot \left( T_{\frac{1}{2} \mathcal {J}(\lambda -\mu )} M_{-p} [e^{-\frac{8}{9} \pi \cdot ^2}]\right) (\xi ). \end{aligned}$$
With this, application of the triangle inequality yields
$$\begin{aligned} & |{\mathcal {F}}[F_A(\cdot ) \gamma (\cdot -\tau )](\xi )| \le \Vert A\Vert _{\max } \sum _{\lambda ,\mu \in \Gamma } |{\mathcal {F}}[\Phi _{\lambda ,\mu } \gamma (\cdot -\tau )](\xi )| \\ & \quad \le \frac{8}{9} \Vert A\Vert _{\max } \sum _{\lambda ,\mu \in \mathfrak {a}{\mathbb Z}^2}. e^{ -\frac{\pi }{4} (\lambda -\mu )^2 - \frac{\pi }{36} (\lambda +\mu -2\tau )^2 -\frac{8\pi }{9} \left( \xi - \frac{1}{2}\mathcal {J}(\lambda -\mu ) \right) ^2}. \end{aligned}$$
Note that
\(\mathcal {J}^2=-I\), that
\(\mathcal {J}^{-1}=-\mathcal {J}\) and that
$$ {\left\{ \begin{array}{ll} \mathfrak {a}{\mathbb Z}^2 \times \mathfrak {a}{\mathbb Z}^2 \quad & \rightarrow \quad \mathfrak {a}{\mathbb Z}^2\times \mathfrak {a}{\mathbb Z}^2\\ (\lambda ,\mu ) \quad & \mapsto \quad (\lambda +\mu ,\lambda -\mu ) \end{array}\right. } $$
is injective (but not onto!). Thus, substituting
\(u=\lambda +\mu \) and
\(v=\lambda -\mu \) and
\(\xi ' = \mathcal {J}\xi \) allows us to estimate the above sum from above by
$$\begin{aligned}&\sum _{u,v\in \mathfrak {a}{\mathbb Z}^2} \exp \left\{ -\frac{\pi }{4} v^2 -\frac{\pi }{36} (u-2\tau )^2 -\frac{8\pi }{9} (\xi -\frac{1}{2} \mathcal {J} v)^2\right\} \nonumber \\ =&\sum _{u,v\in \mathfrak {a}{\mathbb Z}^2} \exp \left\{ -\frac{\pi }{4} v^2 -\frac{\pi }{36} (u-2\tau )^2 -\frac{8\pi }{9} (\xi '-\frac{v}{2} )^2\right\} \nonumber \\ =&\left( \sum _{u\in \mathfrak {a}{\mathbb Z}^2} e^{-\frac{\pi }{36} (u-2\tau )^2}\right) \left( \sum _{v\in \mathfrak {a}{\mathbb Z}^2} e^{-\frac{\pi }{4} v^2 -\frac{8\pi }{9} (\xi '-\frac{v}{2})^2} \right) . \end{aligned}$$
(6.7)
As per Lemma
4.2 we have that
$$\begin{aligned} \sum _{u\in \mathfrak {a}{\mathbb Z}^2} e^{-\frac{\pi }{36} (u-2\tau )^2} \le \left( \sup _{t\in {\mathbb R}} \sum _{k\in {\mathbb Z}} e^{-\frac{\pi }{72} (k-t)^2 } \right) ^2 \le 72\vartheta _3(0, e^{-72\pi })^2. \end{aligned}$$
We rewrite the second sum in (
6.7) as
$$\begin{aligned} \sum _{v\in \mathfrak {a}{\mathbb Z}^2} e^{-\frac{\pi }{4} v^2 -\frac{8\pi }{9} (\xi '-\frac{v}{2})^2} = \prod _{\ell =1}^2 \sum _{k\in {\mathbb Z}} \exp \left\{ -\frac{\pi }{8} k^2 -\frac{\pi }{9} \left( k - 2\sqrt{2} \xi '_\ell \right) ^2 \right\} . \end{aligned}$$
We consider for
\(t\in {\mathbb R}\) arbitrary
$$\begin{aligned} \begin{aligned} \sum _{k\in {\mathbb Z}} \exp \left\{ -\frac{\pi }{8} k^2 -\frac{\pi }{9} \left( k - t\right) ^2 \right\}&= e^{-\frac{\pi }{17} t^2} \sum _{k\in {\mathbb Z}} \exp \{ -\frac{17}{72}\pi (k-\frac{8}{17}t)^2\}\\&\le e^{-\frac{\pi }{17}t^2} \cdot \sqrt{\frac{72}{17}} \vartheta _3(0, e^{-\frac{72}{17}\pi }), \end{aligned} \end{aligned}$$
where we once more made use of Lemma
4.2. Plugging in
\(t=2\sqrt{2} \xi '_\ell \),
\(\ell \in \{1,2\}\), we obtain by combining the above estimates that
$$\begin{aligned} & |{\mathcal {F}}[F_A(\cdot ) \gamma (\cdot -\tau )](\xi )| \\ & \quad \le \frac{8}{9} \Vert A\Vert _{\max } \cdot \frac{72^2}{17} \cdot \vartheta _3(0, e^{-72\pi })^2 \cdot \vartheta _3(0, e^{-\frac{72}{17}\pi })^2 \cdot e^{-\frac{8\pi }{17}\xi ^2 }. \end{aligned}$$
Recall that a positive definite matrix attains its maximum absolute value in the diagonal:
\(\Vert A\Vert _{\max } =\max _{\lambda \in \Gamma } A_{\lambda ,\lambda }\). Finally, as
$$ \frac{8}{9} \cdot \frac{72^2}{17} \cdot \vartheta _3(0, e^{-72\pi })^2 \cdot \vartheta _3(0, e^{-\frac{72}{17}\pi })^2<272, $$
we find that
$$\begin{aligned} |{\mathcal {F}}[F_A \cdot \gamma (\cdot -\tau )](\xi )| \le 272 \left( \max _{\lambda \in \Gamma } A_{\lambda ,\lambda }\right) e^{-\frac{8\pi }{17}\xi ^2}, \end{aligned}$$
which proves the first statement.
To prove the second statement, let
\(\zeta \in {\mathbb C}^2\) such that
\(|{\text {Im}}\zeta |=r\). We apply the triangle inequality to obtain
$$\begin{aligned} & |F_A(\zeta )| \le \Vert A\Vert _{\max } \cdot \sum _{\lambda ,\mu \in \Gamma } |\Phi _{\lambda ,\mu }(\zeta )| \nonumber \\ & \quad = \Vert A\Vert _{\max } \cdot \sum _{\lambda ,\mu \in \Gamma } e^{- \frac{\pi }{4} (\lambda -\mu )^2 -\pi {\text {Im}}\zeta \cdot \mathcal {J}(\lambda -\mu ) - \pi \left( {\text {Re}}\zeta -\frac{\lambda +\mu }{2}\right) ^2 + \pi ({\text {Im}}\zeta )^2 }. \end{aligned}$$
We substitute again
\(v=\lambda -\mu \) and
\(u=\lambda +\mu \), and notice that
$$\begin{aligned} -\frac{\pi }{4} v^2-\pi {\text {Im}}\zeta \cdot \mathcal {J}v+\pi ({\text {Im}}\zeta )^2&= -\pi \left( {\text {Im}}\zeta + \frac{1}{2} \mathcal {J}v \right) ^2 + 2\pi ({\text {Im}}\zeta )^2 \\&\le -\pi \left( {\text {Im}}\zeta + \frac{1}{2} \mathcal {J}v \right) ^2 + 2\pi r^2. \end{aligned}$$
With this (and recalling that
\((\lambda ,\mu )\mapsto (\lambda +\mu ,\lambda -\mu )\) is injective on
\(\mathfrak {a}{\mathbb Z}^2 \times \mathfrak {a}{\mathbb Z}^2\)),
$$\begin{aligned} |F_A(\zeta )| \le \Vert A\Vert _{\max } \cdot e^{2\pi r^2} \cdot \sum _{v\in \mathfrak {a}{\mathbb Z}^2} e^{-\pi \left( {\text {Im}}\zeta + \frac{1}{2} \mathcal {J}v\right) ^2} \cdot \sum _{u\in \mathfrak {a}{\mathbb Z}^2} e^{-\pi \left( {\text {Re}}\zeta -\frac{1}{2} u \right) ^2}. \end{aligned}$$
(6.8)
To bound the first sum on the right hand side we proceed similarly as before and resort to a one dimensional sum:
$$\begin{aligned} & \sum _{v\in \mathfrak {a}{\mathbb Z}^2} e^{-\pi \left( {\text {Im}}\zeta + \frac{1}{2} \mathcal {J}v\right) ^2} \le \left( \sup _{t\in {\mathbb R}} \sum _{k\in {\mathbb Z}} e^{-\pi (t+ \frac{k}{2\sqrt{2}})^2} \right) ^2 = \left( \sup _{t\in {\mathbb R}} \sum _{k\in {\mathbb Z}} e^{-\frac{\pi }{8}(t+ k)^2} \right) ^2\\ & \quad \le 8 \vartheta _3(0,e^{-8\pi })^2, \end{aligned}$$
where the last inequality is again a consequence of Lemma
4.2. An analogous argument shows that the second sum in (
6.8) is upper bounded by the same quantity. Hence,
$$\begin{aligned} |F_A(\zeta )| \le \Vert A\Vert _{\max } e^{2\pi r^2} \cdot 8^2 \vartheta _3(0,e^{-8\pi })^4 = \Vert A\Vert _{\max } e^{2\pi r^2} \cdot 64.0\ldots \end{aligned}$$
Since
\(\zeta \) with
\(|{\text {Im}}\zeta |=r\) was arbitrary, we are done.