Skip to main content
Top

2020 | OriginalPaper | Chapter

5. Game Theory Based Congestion Control Framework

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

WSNs connected to the Internet through 6LoWPAN have wide applications in industrial, automation, health care, military, environment, logistics, etc. An estimate by Bell Labs suggests that from 50 to 100 billion things are expected to be connected to the Internet by 2020 [1], and the number of the wireless sensor devices will account for a majority of these. Generally, the applications can be categorized into four types: event-based, continuous, query-based and hybrid applications based on the data delivery method [2, 3]. In the hybrid application type, the first three categories are combined into hybrid application, i.e. sensor nodes send packets in response to an event (event based) and at the same time send packets periodically (continuous) as well as send a reply to a sink query (query based). This type of application will be common in the future as WSNs are integrated with the Internet to form the IoT [4]. In the IoT applications, the sensor nodes host many different application types simultaneously (event based, continuous and query based) with varied requirements. Some of them are real-time applications, where the application data is time-critical and delay-constrained, while others are non-real-time applications. Some applications send very important data and losing this data is not permitted, e.g. medical applications and fire detection applications. This brings new challenges to the congestion control algorithms and mechanisms designed to be aware of application priorities as well as node priorities. However, according to our best knowledge, none of the existing congestion control literature in WSNs and 6LoWPAN networks supports awareness of both node priorities and application priorities. To address this, later we define a ‘priority cost function’ to support node priority awareness and distinguish between high-priority nodes and low-priority nodes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Weldon M (2016) The future X network: a bell labs perspective. CRC Press Weldon M (2016) The future X network: a bell labs perspective. CRC Press
2.
go back to reference Ghaffari A (2015) Congestion control mechanisms in wireless sensor networks: a survey. J Netw Comput Appl 52:101–115CrossRef Ghaffari A (2015) Congestion control mechanisms in wireless sensor networks: a survey. J Netw Comput Appl 52:101–115CrossRef
3.
go back to reference Kafi MA, Djenouri D, Ben-Othman J, Badache N (2014) Congestion control protocols in wireless sensor networks: a survey. IEEE Commun Surv Tutor 16(3):1369–1390CrossRef Kafi MA, Djenouri D, Ben-Othman J, Badache N (2014) Congestion control protocols in wireless sensor networks: a survey. IEEE Commun Surv Tutor 16(3):1369–1390CrossRef
4.
go back to reference Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54(15):2787–2805CrossRef Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54(15):2787–2805CrossRef
5.
go back to reference Winter T, Thubert P, Brandt A, Hui J, Kelsey R (2012) RPL: IPv6 routing protocol for low-power and lossy networks. IETF, RFC 6550 Winter T, Thubert P, Brandt A, Hui J, Kelsey R (2012) RPL: IPv6 routing protocol for low-power and lossy networks. IETF, RFC 6550
6.
go back to reference Dunkels A, B. Grönvall B, Voigt T (2004) Contiki - a lightweight and flexible operating system for tiny networked sensors. In: Proceedings of 29th annual IEEE international conference on local computer networks. IEEE, pp 455–462 Dunkels A, B. Grönvall B, Voigt T (2004) Contiki - a lightweight and flexible operating system for tiny networked sensors. In: Proceedings of 29th annual IEEE international conference on local computer networks. IEEE, pp 455–462
7.
go back to reference Osterlind E, Dunkels A, Eriksson J, Finne N, Voigt T (2006) Cross-Level sensor network simulation with COOJA. In: Proceedings of 31st IEEE conference on local computer networks. IEEE, pp 641–648 Osterlind E, Dunkels A, Eriksson J, Finne N, Voigt T (2006) Cross-Level sensor network simulation with COOJA. In: Proceedings of 31st IEEE conference on local computer networks. IEEE, pp 641–648
8.
go back to reference Wang L, Kuo G-S (2013) Mathematical modeling for network selection in heterogeneous wireless networks–a tutorial. IEEE Commun Surv Tutor 15(1):271–292CrossRef Wang L, Kuo G-S (2013) Mathematical modeling for network selection in heterogeneous wireless networks–a tutorial. IEEE Commun Surv Tutor 15(1):271–292CrossRef
9.
go back to reference Nikaido H, Isoda K (1955) Note on noncooperative convex games. Pac J Math 5(5):807–815CrossRef Nikaido H, Isoda K (1955) Note on noncooperative convex games. Pac J Math 5(5):807–815CrossRef
10.
go back to reference Rosen JB (1965) Existence and uniqueness of equilibrium points for concave N-person games. Econ: J Econ Soc 520–534 Rosen JB (1965) Existence and uniqueness of equilibrium points for concave N-person games. Econ: J Econ Soc 520–534
11.
go back to reference Brown RG (2004) Smoothing, Forecasting and prediction of discrete time series. Courier Corporation Brown RG (2004) Smoothing, Forecasting and prediction of discrete time series. Courier Corporation
12.
go back to reference Michopoulos V, Guan L, Oikonomou G, Phillips I (2002) DCCC6: duty cycle-aware congestion control for 6LoWPAN networks. In: Proceedings of international conference on pervasive computing and communications workshops (PERCOM workshops). IEEE, pp 278–283 Michopoulos V, Guan L, Oikonomou G, Phillips I (2002) DCCC6: duty cycle-aware congestion control for 6LoWPAN networks. In: Proceedings of international conference on pervasive computing and communications workshops (PERCOM workshops). IEEE, pp 278–283
13.
go back to reference Castellani AP, Rossi M, Zorzi M (2014) Back pressure congestion control for CoAP/6LoWPAN networks. Ad Hoc Netw 18:71–84CrossRef Castellani AP, Rossi M, Zorzi M (2014) Back pressure congestion control for CoAP/6LoWPAN networks. Ad Hoc Netw 18:71–84CrossRef
14.
go back to reference Stehlık M (2011) Comparison of simulators for wireless sensor networks, Master’s thesis, Faculty of informatics, Masaryk university, Brno, Czech Republic Stehlık M (2011) Comparison of simulators for wireless sensor networks, Master’s thesis, Faculty of informatics, Masaryk university, Brno, Czech Republic
15.
go back to reference Dunkels A, Eriksson J, Finne N, Tsiftes N (2011) Powertrace: network-level power profiling for low-power wireless networks. Technical report, Swedish Institute of Computer Science (SICS) Dunkels A, Eriksson J, Finne N, Tsiftes N (2011) Powertrace: network-level power profiling for low-power wireless networks. Technical report, Swedish Institute of Computer Science (SICS)
16.
go back to reference Rangwala S, Gummadi R, Govindan R, Psounis K (2006) Interference-aware fair rate control in wireless sensor networks. ACM SIGCOMM Comput Commun Rev 36(4):63–74CrossRef Rangwala S, Gummadi R, Govindan R, Psounis K (2006) Interference-aware fair rate control in wireless sensor networks. ACM SIGCOMM Comput Commun Rev 36(4):63–74CrossRef
17.
go back to reference Michopoulos V (2012) Congestion and medium access control in 6LoWPAN WSN, Ph.D. dissertation, Computer science, Loughborough University Michopoulos V (2012) Congestion and medium access control in 6LoWPAN WSN, Ph.D. dissertation, Computer science, Loughborough University
18.
go back to reference Zawodniok M, Jagannathan S (2007) Predictive congestion control protocol for wireless sensor networks. IEEE Trans Wirel Commun 6(11):3955–3963CrossRef Zawodniok M, Jagannathan S (2007) Predictive congestion control protocol for wireless sensor networks. IEEE Trans Wirel Commun 6(11):3955–3963CrossRef
Metadata
Title
Game Theory Based Congestion Control Framework
Author
Hayder Al-Kashoash
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-17732-4_5

Premium Partner