Skip to main content
Top
Published in: Wireless Networks 6/2020

22-05-2020

Game-theory-based lifetime maximization of multi-channel cooperative spectrum sensing in wireless sensor networks

Authors: Asma Bagheri, Ataollah Ebrahimzadeh, Maryam Najimi

Published in: Wireless Networks | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Accurate and efficient detection of the radio-frequency spectrum is a challenging issue in wireless sensor networks (WSNs), which are used for multi-channel cooperative spectrum sensing (MCSS). Due to the limited battery power of sensors, lifetime maximization of a WSN is an important issue further sensing quality requirements. The issue is more complex if the low-cost sensors cannot sense more than one channel simultaneously, because they do not have high-speed Analogue-to-Digital-Convertors which need high-power batteries. This paper proposes a novel game-theoretic sensor selection algorithm for MCSS that extends the network lifetime assuming the quality of sensing and the limited ability of sensors. To this end, an optimization problem is formulated using the “max–min” method, in which the minimum remaining energy of sensors is maximized to keep energy balancing in the WSN. This paper proposes a coalition game to solve the problem, in which sensors act as game players and decide to make disjoint coalitions for MCSS. Each coalition senses one of the channels. Other nodes, that decide to sense none of the channels, turn off their sensing module to reserve energy. First, a novel utility function for the coalitions is proposed based on the remaining energy and consumption energy of sensors besides their detection quality. Then, an algorithm is designed to reach a Nash-Equilibrium (NE) coalition structure. The existence of at least one NE, converging toward one of the NEs, and the computational complexity of the proposed algorithm are discussed. Finally, simulations are presented to demonstrate the ability of the proposed algorithm, assuming the systems using IEEE802.15.4/Zigbee and IEEE802.11af.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
This assumption does not have an effect on the proposed algorithm, and it can be extended to the other existing proper detectors, easily.
 
2
There are studies on the SNR estimation of nodes in spectrum sensing networks, but it is not the goal of this paper. Although the assumption seems unrealistic for some scenarios, it does not affect the proposed algorithm, and the algorithm steps can be done based on the average SNR or Packet Reception Ratio, similarly [26].
 
3
Detection based sensor selection.
 
Literature
1.
go back to reference Ali, A., & Hamouda, W. (2016). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communications Surveys & Tutorials,19(2), 1277–1304. Ali, A., & Hamouda, W. (2016). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communications Surveys & Tutorials,19(2), 1277–1304.
2.
go back to reference Kobo, H., Abu-Mahfouz, A., & Hancke, G. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access,5, 1872–1899. Kobo, H., Abu-Mahfouz, A., & Hancke, G. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access,5, 1872–1899.
3.
go back to reference Cichoń, K., Kliks, A., & Bogucka, H. (2016). Energy-efficient cooperative spectrum sensing: A survey. IEEE Communications Surveys & Tutorials,18(3), 1861–1886. Cichoń, K., Kliks, A., & Bogucka, H. (2016). Energy-efficient cooperative spectrum sensing: A survey. IEEE Communications Surveys & Tutorials,18(3), 1861–1886.
4.
go back to reference Deng, R., Chen, J., Yuen, C., Cheng, P., & Sun, Y. (2012). Energy-efficient cooperative spectrum sensing by optimal scheduling in sensor-aided cognitive radio networks. IEEE Transactions on Vehicular Technology,61(2), 716–726. Deng, R., Chen, J., Yuen, C., Cheng, P., & Sun, Y. (2012). Energy-efficient cooperative spectrum sensing by optimal scheduling in sensor-aided cognitive radio networks. IEEE Transactions on Vehicular Technology,61(2), 716–726.
5.
go back to reference Maleki, S., Chepuri, S., & Leus, G. (2013). Optimization of hard fusion based spectrum sensing for energy-constrained cognitive radio networks. Physical Communication,9, 193–198. Maleki, S., Chepuri, S., & Leus, G. (2013). Optimization of hard fusion based spectrum sensing for energy-constrained cognitive radio networks. Physical Communication,9, 193–198.
6.
go back to reference Vien, Q.-T., Nguyen, H. X., & Nallanathan, A. (2015). Cooperative spectrum sensing with secondary user selection for cognitive radio networks over Nakagami-m fading channels. IET Communications,10(1), 91–97. Vien, Q.-T., Nguyen, H. X., & Nallanathan, A. (2015). Cooperative spectrum sensing with secondary user selection for cognitive radio networks over Nakagami-m fading channels. IET Communications,10(1), 91–97.
7.
go back to reference Najimi, M., Ebrahimzadeh, A., Andargoli, S. M. H., & Fallahi, A. (2014). Lifetime maximization in cognitive sensor networks based on the node selection. IEEE sensors Journal,14(7), 2376–2383. Najimi, M., Ebrahimzadeh, A., Andargoli, S. M. H., & Fallahi, A. (2014). Lifetime maximization in cognitive sensor networks based on the node selection. IEEE sensors Journal,14(7), 2376–2383.
8.
go back to reference Hattab, G. & Ibnkahla, M. (2014). Multiband spectrum sensing: Challenges and limitations. In Proc. WiSense workshop, Ottawa. Hattab, G. & Ibnkahla, M. (2014). Multiband spectrum sensing: Challenges and limitations. In Proc. WiSense workshop, Ottawa.
9.
go back to reference Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2009). Optimal multiband joint detection for spectrum sensing in cognitive radio network. IEEE Transactions on Signal Processing,57(3), 1128–1140.MathSciNetMATH Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2009). Optimal multiband joint detection for spectrum sensing in cognitive radio network. IEEE Transactions on Signal Processing,57(3), 1128–1140.MathSciNetMATH
10.
go back to reference Wu, Y., & Cardei, M. (2016). Multi-channel and cognitive radio approaches for wireless sensor networks. Computer Communications,94, 30–45. Wu, Y., & Cardei, M. (2016). Multi-channel and cognitive radio approaches for wireless sensor networks. Computer Communications,94, 30–45.
11.
go back to reference Zheng, M., Chen, L., Liang, W., Yu, H., & Wu, J. (2017). Energy-efficiency maximization for cooperative spectrum sensing in cognitive sensor networks. IEEE Transactions on Green Communications and Networking,1(1), 29–39. Zheng, M., Chen, L., Liang, W., Yu, H., & Wu, J. (2017). Energy-efficiency maximization for cooperative spectrum sensing in cognitive sensor networks. IEEE Transactions on Green Communications and Networking,1(1), 29–39.
12.
go back to reference Ozger, M., Alagoz, F., & Akan, O. (2018). Clustering in multi-channel cognitive radio ad hoc and sensor networks. IEEE Communications Magazine,56(4), 156–162. Ozger, M., Alagoz, F., & Akan, O. (2018). Clustering in multi-channel cognitive radio ad hoc and sensor networks. IEEE Communications Magazine,56(4), 156–162.
13.
go back to reference Kaligineedi, P., & Bhargava, V. (2011). Sensor allocation and quantization schemes for multi-band cognitive radio cooperative sensing system. IEEE Transaction on Wireless Communications,10(1), 284–293. Kaligineedi, P., & Bhargava, V. (2011). Sensor allocation and quantization schemes for multi-band cognitive radio cooperative sensing system. IEEE Transaction on Wireless Communications,10(1), 284–293.
15.
go back to reference Asheralieva, A., Quek, T., & Niyato, D. (2018). An asymmetric evolutionary bayesian coalition formation game for distributed resource sharing in a multi-cell device-to-device enabled cellular network. IEEE Transactions on Wireless Communications,17(6), 3752–3767. Asheralieva, A., Quek, T., & Niyato, D. (2018). An asymmetric evolutionary bayesian coalition formation game for distributed resource sharing in a multi-cell device-to-device enabled cellular network. IEEE Transactions on Wireless Communications,17(6), 3752–3767.
16.
go back to reference Song, L., Li, Y., Ding, Z., & Poor, H. (2017). Resource management in non-orthogonal multiple access networks for 5G and beyond. IEEE Network,31(4), 8–14. Song, L., Li, Y., Ding, Z., & Poor, H. (2017). Resource management in non-orthogonal multiple access networks for 5G and beyond. IEEE Network,31(4), 8–14.
17.
go back to reference Kim, S. (2014). Game theory applications in network design. Hershey: IGI Global. Kim, S. (2014). Game theory applications in network design. Hershey: IGI Global.
18.
go back to reference Dai, Z., Wang, Z., & Wong, V. W. S. (2016). An overlapping coalitional game for cooperative spectrum sensing and access in cognitive radio networks. IEEE Transactions on Vehicular Technology,65(10), 8400–8413. Dai, Z., Wang, Z., & Wong, V. W. S. (2016). An overlapping coalitional game for cooperative spectrum sensing and access in cognitive radio networks. IEEE Transactions on Vehicular Technology,65(10), 8400–8413.
19.
go back to reference Umar, R., & Mesbah, W. (2016). Coordinated coalition formation in throughput-efficient cognitive radio networks. Wireless Communications and Mobile Computing,16, 912–928. Umar, R., & Mesbah, W. (2016). Coordinated coalition formation in throughput-efficient cognitive radio networks. Wireless Communications and Mobile Computing,16, 912–928.
20.
go back to reference Olawole, A., Takawira, F., & Oyerinde, O. (2019). Fusion rule and cluster head selection scheme in cooperative spectrum sensing. IET Communications,13(6), 758–765. Olawole, A., Takawira, F., & Oyerinde, O. (2019). Fusion rule and cluster head selection scheme in cooperative spectrum sensing. IET Communications,13(6), 758–765.
21.
go back to reference Sasabe, M., Nishida, T., & Kasahara, S. (2019). Collaborative spectrum sensing mechanism based on user incentive in cognitive radio networks. Computer Communications,147, 1–13. Sasabe, M., Nishida, T., & Kasahara, S. (2019). Collaborative spectrum sensing mechanism based on user incentive in cognitive radio networks. Computer Communications,147, 1–13.
22.
go back to reference Rajendran, M., & Duraisamy, M. (2019). Distributed coalition formation game for enhancing cooperative spectrum sensing in cognitive radio ad hoc networks. IET Networks,9(1), 12–22. Rajendran, M., & Duraisamy, M. (2019). Distributed coalition formation game for enhancing cooperative spectrum sensing in cognitive radio ad hoc networks. IET Networks,9(1), 12–22.
23.
go back to reference Hao, X., Cheung, M., Wong, V., & Leung, V. (2011). A coalition formation game for energy-efficient cooperative spectrum sensing in cognitive radio networks with multiple channels. In GLOBECOM. Hao, X., Cheung, M., Wong, V., & Leung, V. (2011). A coalition formation game for energy-efficient cooperative spectrum sensing in cognitive radio networks with multiple channels. In GLOBECOM.
24.
go back to reference Belghiti, I., Berrada, I., & El Kamili, M. (2019). A scalable framework for green large cognitive radio networks. Cognitive Computation and Systems,1(3), 79–84. Belghiti, I., Berrada, I., & El Kamili, M. (2019). A scalable framework for green large cognitive radio networks. Cognitive Computation and Systems,1(3), 79–84.
25.
go back to reference Moualeu, J. M., Ngatched, T. M. N., Hamouda, W., & Takawira, F. (2014). Energy-efficient cooperative spectrum sensing and transmission in multi-channel cognitive radio networks. In IEEE international conference on communications (ICC), Sydney. Moualeu, J. M., Ngatched, T. M. N., Hamouda, W., & Takawira, F. (2014). Energy-efficient cooperative spectrum sensing and transmission in multi-channel cognitive radio networks. In IEEE international conference on communications (ICC), Sydney.
26.
go back to reference Arora, N., & Mahajan, R. (2014). Cooperative spectrum sensing using hard decision fusion scheme. International Journal of Engineering Research and General Science,2(4), 36–43. Arora, N., & Mahajan, R. (2014). Cooperative spectrum sensing using hard decision fusion scheme. International Journal of Engineering Research and General Science,2(4), 36–43.
27.
go back to reference Noori, M., & Ardakani, M. (2011). Lifetime analysis of random event-driven clustered wireless sensor networks. IEEE Transactions on Mobile Computing,10(10), 1448–1458. Noori, M., & Ardakani, M. (2011). Lifetime analysis of random event-driven clustered wireless sensor networks. IEEE Transactions on Mobile Computing,10(10), 1448–1458.
28.
go back to reference Li, P., Gua, S., & Cheng, Z. (2014). Max-min lifetime optimization for cooperative communications in cognitive radio networks. IEEE Transactions on Parallel and Distributed Systems,25(6), 1533–1542. Li, P., Gua, S., & Cheng, Z. (2014). Max-min lifetime optimization for cooperative communications in cognitive radio networks. IEEE Transactions on Parallel and Distributed Systems,25(6), 1533–1542.
29.
go back to reference Shapely, L. S. (1988). A value for n-person games. In A. E. Roth (Ed.), The shapely value (pp. 31–40). Cambridge: University of Cambridge Press. Shapely, L. S. (1988). A value for n-person games. In A. E. Roth (Ed.), The shapely value (pp. 31–40). Cambridge: University of Cambridge Press.
30.
go back to reference Xu, Y., Wang, J., Wu, Q., Anpalagan, A., & Yao, Y. (2012). Opportunistic spectrum access in unknown dynamic environment: a game-theoretic stochastic learning solution. IEEE Transaction on Wireless Communications,11(4), 1380–1390. Xu, Y., Wang, J., Wu, Q., Anpalagan, A., & Yao, Y. (2012). Opportunistic spectrum access in unknown dynamic environment: a game-theoretic stochastic learning solution. IEEE Transaction on Wireless Communications,11(4), 1380–1390.
31.
go back to reference Lã, Q. D., Chew, Y. H., & Soong, B.-H. (2016). Potential game theory: applications in radio resource allocation. Berlin: Springer.MATH Lã, Q. D., Chew, Y. H., & Soong, B.-H. (2016). Potential game theory: applications in radio resource allocation. Berlin: Springer.MATH
32.
go back to reference Mardan, J., Arslan, G., & Shamma, J. S. (2009). Cooperative control and potential games. IEEE Transactions on Systems, Man and Cybernetics,39(6), 1393–1407. Mardan, J., Arslan, G., & Shamma, J. S. (2009). Cooperative control and potential games. IEEE Transactions on Systems, Man and Cybernetics,39(6), 1393–1407.
33.
34.
go back to reference Han, D., & Lim, J. H. (2010). Smart home energy management system. IEEE Transactions on Consumer Electronics,56(3), 1403–1410. Han, D., & Lim, J. H. (2010). Smart home energy management system. IEEE Transactions on Consumer Electronics,56(3), 1403–1410.
35.
go back to reference Ismail, N., & Othman, M. (2009). Low power phase locked loop frequency synthesizer for 2.4 GHz band Zigbee. American Journal of Engineering and Applied Sciences,2(2), 337–343. Ismail, N., & Othman, M. (2009). Low power phase locked loop frequency synthesizer for 2.4 GHz band Zigbee. American Journal of Engineering and Applied Sciences,2(2), 337–343.
36.
go back to reference Flores, A., Guerra, R., Knightly, E., Ecclesine, P., & Pandey, S. (2013). IEEE 802.11 af: A standard for TV white space spectrum sharing. IEEE Communications Magazine,51(10), 92–100. Flores, A., Guerra, R., Knightly, E., Ecclesine, P., & Pandey, S. (2013). IEEE 802.11 af: A standard for TV white space spectrum sharing. IEEE Communications Magazine,51(10), 92–100.
37.
go back to reference Banerji S. (2013). Upcoming standards in wireless local area networks. Wireless & Mobile Technologies. arXiv preprint arXiv:1307.7633. Banerji S. (2013). Upcoming standards in wireless local area networks. Wireless & Mobile Technologies. arXiv preprint arXiv:​1307.​7633.
38.
go back to reference Chiaravalloti, S., Idzikowski, F., & Budzisz, Ł. (2011). Power consumption of WLAN network elements. Berlin: Technische Universität Berlin. Chiaravalloti, S., Idzikowski, F., & Budzisz, Ł. (2011). Power consumption of WLAN network elements. Berlin: Technische Universität Berlin.
Metadata
Title
Game-theory-based lifetime maximization of multi-channel cooperative spectrum sensing in wireless sensor networks
Authors
Asma Bagheri
Ataollah Ebrahimzadeh
Maryam Najimi
Publication date
22-05-2020
Publisher
Springer US
Published in
Wireless Networks / Issue 6/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02369-1

Other articles of this Issue 6/2020

Wireless Networks 6/2020 Go to the issue