Skip to main content
Top

2020 | OriginalPaper | Chapter

2. Gas Sorption

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter first reviews the basic theory underlying adsorption-based methods. It then highlights some key issues, beyond what is normally found in apparatus manuals, which arise when conducting experiments. The particular reasons for the choice of adsorbate to characterise a given adsorbent are then discussed. The types of data that can be obtained from various types of sorption experiments are then described, along with suggestions for several different data analysis methods to deliver a range of descriptors for porous solids. These include surface area, pore sizes, surface roughness, pore connectivity, pore length, and degree of spatial heterogeneity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Androutsopoulos GP, Salmas CE (2000) A new model for capillary condensation—evaporation hysteresis based on a random corrugated pore structure concept:  prediction of intrinsic pore size distributions. 1. Model Formulation. Ind Eng Chem Res 39(10):3747–3763 Androutsopoulos GP, Salmas CE (2000) A new model for capillary condensation—evaporation hysteresis based on a random corrugated pore structure concept:  prediction of intrinsic pore size distributions. 1. Model Formulation. Ind Eng Chem Res 39(10):3747–3763
go back to reference Aukett PN, Jessop CA (1996) Assessment of connectivity in mixed meso/macroporous solids using nitrogen sorption. Fundamentals of adsorption. Kluwer Academic Publishers, MA, pp 59–66CrossRef Aukett PN, Jessop CA (1996) Assessment of connectivity in mixed meso/macroporous solids using nitrogen sorption. Fundamentals of adsorption. Kluwer Academic Publishers, MA, pp 59–66CrossRef
go back to reference Barrett EP, Joyner LG, Halenda PP (1951) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J Am Chem Soc 73(1):373–380 Barrett EP, Joyner LG, Halenda PP (1951) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J Am Chem Soc 73(1):373–380
go back to reference Broekhoff JCP, De Boer JH (1967) Studies on pore systems in catalysis X: calculations of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores. J Catal 9:15–27CrossRef Broekhoff JCP, De Boer JH (1967) Studies on pore systems in catalysis X: calculations of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores. J Catal 9:15–27CrossRef
go back to reference Chuang IS, Maciel GE (1997) A detailed model of local structure and silanol hydrogen banding of silica gel surfaces. J Phys Chem 101:3052–3064CrossRef Chuang IS, Maciel GE (1997) A detailed model of local structure and silanol hydrogen banding of silica gel surfaces. J Phys Chem 101:3052–3064CrossRef
go back to reference Cohan LH (1938) Sorption hysteresis and the vapor pressure of concave surfaces. J Am Chem Soc 60:433–435CrossRef Cohan LH (1938) Sorption hysteresis and the vapor pressure of concave surfaces. J Am Chem Soc 60:433–435CrossRef
go back to reference Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, Oxford Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, Oxford
go back to reference Davydov VY, Kiselev AV, Zhuralev LT (1964) Study of surface and bulk hydroxyl groups of silica by infra-red spectra and D2O exchange. Trans Farad Soc 60:2254–2264CrossRef Davydov VY, Kiselev AV, Zhuralev LT (1964) Study of surface and bulk hydroxyl groups of silica by infra-red spectra and D2O exchange. Trans Farad Soc 60:2254–2264CrossRef
go back to reference Do D (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, LondonCrossRef Do D (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, LondonCrossRef
go back to reference Esparza JM, Ojeda ML, Campero A, Dominguez A, Kornhauser I, Rojas F, Vidales AM, Lopez RH, Zgrablich G (2004) N-2 sorption scanning behavior of SBA-15 porous substrates. Colloids Surf A 241:35–45CrossRef Esparza JM, Ojeda ML, Campero A, Dominguez A, Kornhauser I, Rojas F, Vidales AM, Lopez RH, Zgrablich G (2004) N-2 sorption scanning behavior of SBA-15 porous substrates. Colloids Surf A 241:35–45CrossRef
go back to reference Gelb LD, Gubbins KE (1998) Characterization of porous glasses: simultion models, adsorption isotherms, and the brunauer-emmett-teller analysis method. Langmuir 14:2097–2111CrossRef Gelb LD, Gubbins KE (1998) Characterization of porous glasses: simultion models, adsorption isotherms, and the brunauer-emmett-teller analysis method. Langmuir 14:2097–2111CrossRef
go back to reference Gelb LD, Gubbins KE (1999) Pore size distributions in porous glasses: a computer simulation study. Langmuir 15:305–308CrossRef Gelb LD, Gubbins KE (1999) Pore size distributions in porous glasses: a computer simulation study. Langmuir 15:305–308CrossRef
go back to reference Gor GY, Huber P, Bernstein N (2017) Adsorption-induced deformation of nanoporous materials—a review. Appl Phys Rev 4:011303CrossRef Gor GY, Huber P, Bernstein N (2017) Adsorption-induced deformation of nanoporous materials—a review. Appl Phys Rev 4:011303CrossRef
go back to reference Gregg SJ, Sing KSW (1982) Adsorption. Surface area and porosity. Academic Press Inc., London Gregg SJ, Sing KSW (1982) Adsorption. Surface area and porosity. Academic Press Inc., London
go back to reference Halsey GD (1948) Physical adsorption on non-uniform surfaces. J Chem Phys 16:931–937CrossRef Halsey GD (1948) Physical adsorption on non-uniform surfaces. J Chem Phys 16:931–937CrossRef
go back to reference Harkins WD, Jura D (1944) Surfaces of solids. XII. An absolute method for the determination of the area of a finely divided crystalline solid. J Am Chem Soc 66:1362–1366CrossRef Harkins WD, Jura D (1944) Surfaces of solids. XII. An absolute method for the determination of the area of a finely divided crystalline solid. J Am Chem Soc 66:1362–1366CrossRef
go back to reference Hitchcock I, Malik S, Holt EM et al (2014) Impact of chemical heterogeneity on the accuracy of pore size distributions in disordered solids. J Phys Chem C 118(35):20627–20638CrossRef Hitchcock I, Malik S, Holt EM et al (2014) Impact of chemical heterogeneity on the accuracy of pore size distributions in disordered solids. J Phys Chem C 118(35):20627–20638CrossRef
go back to reference International Standards Organisation (ISO) (2010) BS ISO 9277:2010 Determination of the specific surface area of solids by gas adsorption—BET method. ISO, Switzerland International Standards Organisation (ISO) (2010) BS ISO 9277:2010 Determination of the specific surface area of solids by gas adsorption—BET method. ISO, Switzerland
go back to reference Jagiello J, Jaroniec M (2018) 2D-NLDFT adsorption models for porous oxides with corrugated cylindrical pores. J Colloid Interface Sci 532:588–597CrossRef Jagiello J, Jaroniec M (2018) 2D-NLDFT adsorption models for porous oxides with corrugated cylindrical pores. J Colloid Interface Sci 532:588–597CrossRef
go back to reference Karnaukhov AP (1985) Improvement of methods for surface area determinations. J Colloid Interface Sci 103(2):311–320CrossRef Karnaukhov AP (1985) Improvement of methods for surface area determinations. J Colloid Interface Sci 103(2):311–320CrossRef
go back to reference Kierlik E, Monson PA, Rosinberg ML, Tarjus G (2002) Adsorption hysteresis and capillary condensation in disordered porous solids: a density functional study. J Phys Conden Matter 14:9295–9315CrossRef Kierlik E, Monson PA, Rosinberg ML, Tarjus G (2002) Adsorption hysteresis and capillary condensation in disordered porous solids: a density functional study. J Phys Conden Matter 14:9295–9315CrossRef
go back to reference Kleitz F, François Bérubé F, Guillet-Nicolas R, Yang C-M, Thommes M (2010) Probing adsorption, pore condensation, and hysteresis behavior of pure fluids in three-dimensional cubic mesoporous KIT-6 silica. J Phys Chem C 114(20):9344–9355CrossRef Kleitz F, François Bérubé F, Guillet-Nicolas R, Yang C-M, Thommes M (2010) Probing adsorption, pore condensation, and hysteresis behavior of pure fluids in three-dimensional cubic mesoporous KIT-6 silica. J Phys Chem C 114(20):9344–9355CrossRef
go back to reference Kruk M, Jaroniec M, Sayari A (1999) New approach to evaluate pore size distributions and surface areas for hydrophobic mesoporous solids. J Phys Chem B 103:10670–10678CrossRef Kruk M, Jaroniec M, Sayari A (1999) New approach to evaluate pore size distributions and surface areas for hydrophobic mesoporous solids. J Phys Chem B 103:10670–10678CrossRef
go back to reference Landers J, Gor GY, Meimark AV (2013) Density functional theory methods for characterization of porous materials. Colloids Surf A 437:3–32CrossRef Landers J, Gor GY, Meimark AV (2013) Density functional theory methods for characterization of porous materials. Colloids Surf A 437:3–32CrossRef
go back to reference Liu HL, Zhang L, Seaton NA (1993) Analysis of sorption hysteresis in mesoporous solids using a pore network model. J Colloid Interface Sci 156(2):285–293CrossRef Liu HL, Zhang L, Seaton NA (1993) Analysis of sorption hysteresis in mesoporous solids using a pore network model. J Colloid Interface Sci 156(2):285–293CrossRef
go back to reference Mahnke M, Mögel HJ (2003) Fractal analysis of physical adsorption on material surfaces. Colloids Surf A 216:215–228CrossRef Mahnke M, Mögel HJ (2003) Fractal analysis of physical adsorption on material surfaces. Colloids Surf A 216:215–228CrossRef
go back to reference Matadamas J, Alferez R, Lopez R, Roman G, Kornhauser I, Rojas F (2016) Advanced and delayed filling or emptying of pore entities by vapour sorption or liquid intrusion in simulated porous networks. Colloids Surf A 496:39–51CrossRef Matadamas J, Alferez R, Lopez R, Roman G, Kornhauser I, Rojas F (2016) Advanced and delayed filling or emptying of pore entities by vapour sorption or liquid intrusion in simulated porous networks. Colloids Surf A 496:39–51CrossRef
go back to reference Matsuhashi H, Tanaka T, Arata K (2001) Measurement of heat of argon adsorption for the evaluation of relative acid strength of some sulfated metal oxides and H-type zeolites. J Phys Chem B 105(40):9669–9671CrossRef Matsuhashi H, Tanaka T, Arata K (2001) Measurement of heat of argon adsorption for the evaluation of relative acid strength of some sulfated metal oxides and H-type zeolites. J Phys Chem B 105(40):9669–9671CrossRef
go back to reference Murray KL, Seaton NA, Day MA (1999) An adsorption-based method for the characterization of pore networks containing both mesopores and macropores. Langmuir 15:6728–6737CrossRef Murray KL, Seaton NA, Day MA (1999) An adsorption-based method for the characterization of pore networks containing both mesopores and macropores. Langmuir 15:6728–6737CrossRef
go back to reference Neimark AV, Ravikovitch PI (2001) Capillary condensation in mms and pore structure characterization. Micropor Mesopor Mater 44:697–707CrossRef Neimark AV, Ravikovitch PI (2001) Capillary condensation in mms and pore structure characterization. Micropor Mesopor Mater 44:697–707CrossRef
go back to reference Pfeifer P, Johnston GP, Deshpande R, Smith DM, Hurd AJ (1991) Structure analysis of porous solids from preadsorbed films. Langmuir 7(11):2833–2843CrossRef Pfeifer P, Johnston GP, Deshpande R, Smith DM, Hurd AJ (1991) Structure analysis of porous solids from preadsorbed films. Langmuir 7(11):2833–2843CrossRef
go back to reference Ravikovitch PI, O’Domhnaill SC, Neimark AV, Schuth F, Unger KK (1995) Capillary hysteresis in nanopores: theoretical and experimental studies of nitrogen adsorption on MCM-41. Langmuir 11:4765–4772CrossRef Ravikovitch PI, O’Domhnaill SC, Neimark AV, Schuth F, Unger KK (1995) Capillary hysteresis in nanopores: theoretical and experimental studies of nitrogen adsorption on MCM-41. Langmuir 11:4765–4772CrossRef
go back to reference Seaton NA (1991) Determination of the connectivity of porous solids from nitrogen sorption measurements. Chem Eng Sci 46(8):1895–1909CrossRef Seaton NA (1991) Determination of the connectivity of porous solids from nitrogen sorption measurements. Chem Eng Sci 46(8):1895–1909CrossRef
go back to reference Thommes M, Katsumi K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069CrossRef Thommes M, Katsumi K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069CrossRef
go back to reference Walker WC, Zettlemoyer AC (1948) A dual-surface BET adsorption theory. Y Phys Colloid Chem 52:47–58CrossRef Walker WC, Zettlemoyer AC (1948) A dual-surface BET adsorption theory. Y Phys Colloid Chem 52:47–58CrossRef
go back to reference Watt-Smith M, Edler KJ, Rigby SP (2005) An experimental study of gas adsorption on fractal surfaces. Langmuir 21(6):2281–2292CrossRef Watt-Smith M, Edler KJ, Rigby SP (2005) An experimental study of gas adsorption on fractal surfaces. Langmuir 21(6):2281–2292CrossRef
Metadata
Title
Gas Sorption
Author
Sean Patrick Rigby
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-47418-8_2

Premium Partners