Skip to main content
Top

2019 | OriginalPaper | Chapter

6. GaSbBi Alloys and Heterostructures: Fabrication and Properties

Authors : O. Delorme, L. Cerutti, R. Kudrawiec, Esperanza Luna, J. Kopaczek, M. Gladysiewicz, A. Trampert, E. Tournié, J.-B. Rodriguez

Published in: Bismuth-Containing Alloys and Nanostructures

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dilute bismuth (Bi) III-V alloys have recently attracted great attention, due to their properties of bandgap reduction and spin–orbit splitting. The incorporation of Bi into antimonide-based III-V semiconductors is very attractive for the development of new optoelectronic devices working in the mid-infrared range (2–5 µm). However, due to its large size, Bi does not readily incorporate into III-V alloys and the epitaxy of III-V dilute bismides is thus very challenging. This chapter presents the most recent developments in the epitaxy and characterization of GaSbBi alloys and heterostructures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.N. Abedin et al., Progress of Multicolor Single Detector to Detector Array Development For Remote Sensing. Proc. SPIE 5543, 239 (2004)CrossRef M.N. Abedin et al., Progress of Multicolor Single Detector to Detector Array Development For Remote Sensing. Proc. SPIE 5543, 239 (2004)CrossRef
2.
go back to reference M.J. Ashwin et al., Controlled nitrogen incorporation in GaNSb alloys. AIP Adv. 1, 032159 (2011)CrossRef M.J. Ashwin et al., Controlled nitrogen incorporation in GaNSb alloys. AIP Adv. 1, 032159 (2011)CrossRef
3.
go back to reference D.E. Aspnes, Third-derivative modulation spectroscopy with low-field electroreflectance. Surf. Sci. 37, 418 (1973)CrossRef D.E. Aspnes, Third-derivative modulation spectroscopy with low-field electroreflectance. Surf. Sci. 37, 418 (1973)CrossRef
4.
go back to reference BIsmide And Nitride Components for High temperature Operation—European Project FP7-STREP n°257974—07/2010–06/2013. www.biancho.org BIsmide And Nitride Components for High temperature Operation—European Project FP7-STREP n°257974—07/2010–06/2013. www.​biancho.​org
5.
go back to reference M. Bahriz et al., High temperature operation of far infrared (λ ~ 20 μm) InAs/AlSb quantum cascade lasers with dielectric waveguide. Opt. Exp. 23(2), 1523–1528 (2015)CrossRef M. Bahriz et al., High temperature operation of far infrared (λ ~ 20 μm) InAs/AlSb quantum cascade lasers with dielectric waveguide. Opt. Exp. 23(2), 1523–1528 (2015)CrossRef
6.
go back to reference N. Baladés et al., Analysis of Bi Distribution in Epitaxial GaAsBi by Aberration-Corrected HAADF-STEM. Nanoscale Res. Lett. 13, 125 (2018)CrossRef N. Baladés et al., Analysis of Bi Distribution in Epitaxial GaAsBi by Aberration-Corrected HAADF-STEM. Nanoscale Res. Lett. 13, 125 (2018)CrossRef
7.
go back to reference F. Bastiman et al., Bi incorporation in GaAs(100)-2 × 1 and 4 × 3 reconstructions investigated by RHEED and STM. J. Cryst. Growth 341, 19 (2012)CrossRef F. Bastiman et al., Bi incorporation in GaAs(100)-2 × 1 and 4 × 3 reconstructions investigated by RHEED and STM. J. Cryst. Growth 341, 19 (2012)CrossRef
8.
go back to reference A. Beyer et al., Local Bi ordering in MOVPE grown Ga(As, Bi) investigated by high resolution scanning transmission electron microscopy. Appl. Mater. Today 6, 22–28 (2017)CrossRef A. Beyer et al., Local Bi ordering in MOVPE grown Ga(As, Bi) investigated by high resolution scanning transmission electron microscopy. Appl. Mater. Today 6, 22–28 (2017)CrossRef
9.
go back to reference R. Butkutė et al., Thermal annealing effect on the properties of GaBiAs. Phys. Status Solidi C 9, 1614 (2012)CrossRef R. Butkutė et al., Thermal annealing effect on the properties of GaBiAs. Phys. Status Solidi C 9, 1614 (2012)CrossRef
10.
go back to reference C. Gardes et al., 100 nm AlSb/InAs HEMT for ultra-low power consumption, low-noise applications. Sci. J. Art. Num. 136340 (2014) C. Gardes et al., 100 nm AlSb/InAs HEMT for ultra-low power consumption, low-noise applications. Sci. J. Art. Num. 136340 (2014)
11.
go back to reference C.R. Tait, J.M. Millunchick, Kinetics of droplet formation and Bi incorporation in GaSbBi alloys. J. Appl. Phys. 119, 215302 (2016)CrossRef C.R. Tait, J.M. Millunchick, Kinetics of droplet formation and Bi incorporation in GaSbBi alloys. J. Appl. Phys. 119, 215302 (2016)CrossRef
12.
go back to reference A. Castellano et al., Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si. APL Photonics 2, 061301 (2017)CrossRef A. Castellano et al., Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si. APL Photonics 2, 061301 (2017)CrossRef
13.
go back to reference L. Cerutti et al., GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength near 1.55 μm. Appl. Phys. Lett. 106, 101102 (2015)CrossRef L. Cerutti et al., GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength near 1.55 μm. Appl. Phys. Lett. 106, 101102 (2015)CrossRef
14.
go back to reference X.R. Chen et al., Bismuth Effects on electronic levels in GaSb(Bi)/AlGaSb quantum wells probed by infrared photoreflectance. Chin. Phys. Lett. 32, 067301 (2015)CrossRef X.R. Chen et al., Bismuth Effects on electronic levels in GaSb(Bi)/AlGaSb quantum wells probed by infrared photoreflectance. Chin. Phys. Lett. 32, 067301 (2015)CrossRef
15.
go back to reference H.K. Choi et al., Double-heterostructure diode lasers emitting at 3 μm with a metastable GaInAsSb active layer and AlGaAsSb cladding layers. Appl. Phys. Lett. 64, 2474 (1994)CrossRef H.K. Choi et al., Double-heterostructure diode lasers emitting at 3 μm with a metastable GaInAsSb active layer and AlGaAsSb cladding layers. Appl. Phys. Lett. 64, 2474 (1994)CrossRef
16.
go back to reference D. Fan et al., MBE grown GaAsBi/GaAs double quantum well separate confinement heterostructures. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 31(3), 181103–181106, (2013)CrossRef D. Fan et al., MBE grown GaAsBi/GaAs double quantum well separate confinement heterostructures. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 31(3), 181103–181106, (2013)CrossRef
17.
go back to reference D.P. Samajdar et al., Calculation of direct E0 energy gaps for III-V-Bi alloys using quantum dielectric theory, in The Book Physics of Semiconductor Devices (Springer International Publishing, Cham, 2014), pp. 779–781CrossRef D.P. Samajdar et al., Calculation of direct E0 energy gaps for III-V-Bi alloys using quantum dielectric theory, in The Book Physics of Semiconductor Devices (Springer International Publishing, Cham, 2014), pp. 779–781CrossRef
18.
go back to reference D.P. Samajdar et al., Calculation of valence band structure of GaSb1−xBix using valence band anticrossing model in the dilute bi regime, in Recent Trends in Materials and Devices (Springer International Publishing, 2016), pp. 243–248 D.P. Samajdar et al., Calculation of valence band structure of GaSb1−xBix using valence band anticrossing model in the dilute bi regime, in Recent Trends in Materials and Devices (Springer International Publishing, 2016), pp. 243–248
19.
go back to reference S.K. Das et al., Near infrared photoluminescence observed in dilute GaSbBi alloys grown by liquid phase epitaxy. Infrared Phys. Technol. 55(1), 156–160 (2012)CrossRef S.K. Das et al., Near infrared photoluminescence observed in dilute GaSbBi alloys grown by liquid phase epitaxy. Infrared Phys. Technol. 55(1), 156–160 (2012)CrossRef
20.
go back to reference O. Delorme et al., Molecular beam epitaxy and characterization of high Bi content GaSbBi alloys. J. Cryst. Growth 477, 144–148 (2017)CrossRef O. Delorme et al., Molecular beam epitaxy and characterization of high Bi content GaSbBi alloys. J. Cryst. Growth 477, 144–148 (2017)CrossRef
21.
go back to reference O. Delorme et al., GaSbBi/GaSb quantum well laser diodes. Appl. Phys. Lett. 110, 222106 (2017)CrossRef O. Delorme et al., GaSbBi/GaSb quantum well laser diodes. Appl. Phys. Lett. 110, 222106 (2017)CrossRef
22.
go back to reference O. Delorme et al., In situ determination of the growth conditions of GaSbBi alloys. J. Cryst. Growth 495, 9–13 (2018)CrossRef O. Delorme et al., In situ determination of the growth conditions of GaSbBi alloys. J. Cryst. Growth 495, 9–13 (2018)CrossRef
23.
go back to reference A. Duzik et al., Surface structure of bismuth terminated GaAs surfaces grown with molecular beam epitaxy. Surf. Sci. 606, 1203 (2012)CrossRef A. Duzik et al., Surface structure of bismuth terminated GaAs surfaces grown with molecular beam epitaxy. Surf. Sci. 606, 1203 (2012)CrossRef
24.
go back to reference A. Duzik et al., Surface morphology and Bi incorporation in GaSbBi(As)/GaSb films. J. Cryst. Growth 390, 5–11 (2014)CrossRef A. Duzik et al., Surface morphology and Bi incorporation in GaSbBi(As)/GaSb films. J. Cryst. Growth 390, 5–11 (2014)CrossRef
25.
go back to reference E. Tournié, A.N. Baranov, Mid-Infrared lasers: a review, in Advances in Semiconductor Lasers, ed. by J.J. Coleman, A.C. Brice, C. Jagadish. Semiconductors and Semimetals, vol. 86 (Academic Press, 2012), pp. 183–226 E. Tournié, A.N. Baranov, Mid-Infrared lasers: a review, in Advances in Semiconductor Lasers, ed. by J.J. Coleman, A.C. Brice, C. Jagadish. Semiconductors and Semimetals, vol. 86 (Academic Press, 2012), pp. 183–226
26.
go back to reference E. Luna et al., Spontaneous formation of three-dimensionally ordered Bi-rich nanostructures within GaAs1−xBix/GaAs quantum wells. Nanotechnology 27(32), 325603 (2016)CrossRef E. Luna et al., Spontaneous formation of three-dimensionally ordered Bi-rich nanostructures within GaAs1−xBix/GaAs quantum wells. Nanotechnology 27(32), 325603 (2016)CrossRef
27.
go back to reference E.G. Bithell, W.M. Stobbs, Composition determination in the GaAs/(Al, Ga) As system using contrast in dark-field transmission electron microscope images. Phil. Mag. A 60, 39 (1989)CrossRef E.G. Bithell, W.M. Stobbs, Composition determination in the GaAs/(Al, Ga) As system using contrast in dark-field transmission electron microscope images. Phil. Mag. A 60, 39 (1989)CrossRef
28.
go back to reference F.K. Tittel, R. Lewicki, Tunable Mid-infrared Laser Absorption Spectroscopy (Woodhead Publishing Ltd., Cambridge, 2013) F.K. Tittel, R. Lewicki, Tunable Mid-infrared Laser Absorption Spectroscopy (Woodhead Publishing Ltd., Cambridge, 2013)
29.
go back to reference M. Ferhat, A. Zaoui, Structural and electronic properties of III-V bismuth compounds. Phys. Rev. B 73, 115107 (2006)CrossRef M. Ferhat, A. Zaoui, Structural and electronic properties of III-V bismuth compounds. Phys. Rev. B 73, 115107 (2006)CrossRef
30.
go back to reference H. Fitouri et al., Photoreflectance and photoluminescence study of localization effects in GaAsBi alloys. Opt. Mater. 42, 67 (2015)CrossRef H. Fitouri et al., Photoreflectance and photoluminescence study of localization effects in GaAsBi alloys. Opt. Mater. 42, 67 (2015)CrossRef
31.
go back to reference T. Fuyuki et al., Electrically pumped room-temperature operation of GaAs1−xBix laser diodes with low-temperature dependence of oscillation wavelength. Appl. Phys. Express 7, 082101 (2014)CrossRef T. Fuyuki et al., Electrically pumped room-temperature operation of GaAs1−xBix laser diodes with low-temperature dependence of oscillation wavelength. Appl. Phys. Express 7, 082101 (2014)CrossRef
32.
go back to reference D.Z. Garbuzov et al., 2.7-μm InGaAsSb/AlGaAsSb laser diodes with continuous-wave operation up to −39 °C. Appl. Phys. Lett. 67, 1346 (1995)CrossRef D.Z. Garbuzov et al., 2.7-μm InGaAsSb/AlGaAsSb laser diodes with continuous-wave operation up to −39 °C. Appl. Phys. Lett. 67, 1346 (1995)CrossRef
33.
go back to reference L. Gelczuk et al., Deep-level defects in n-type GaAsBi alloys grown by molecular beam epitaxy at low temperature and their influence on optical properties. Sci. Rep. 7, 2824 (2017)CrossRef L. Gelczuk et al., Deep-level defects in n-type GaAsBi alloys grown by molecular beam epitaxy at low temperature and their influence on optical properties. Sci. Rep. 7, 2824 (2017)CrossRef
34.
go back to reference F. Glas et al., Determination of the local concentrations of Mn interstitials and antisite defects in GaMnAs. Phys. Rev. Lett. 93, 086107 (2004)CrossRef F. Glas et al., Determination of the local concentrations of Mn interstitials and antisite defects in GaMnAs. Phys. Rev. Lett. 93, 086107 (2004)CrossRef
35.
go back to reference S.E. Godoy et al., Dynamic infrared imaging for skin cancer screening. Infrared Phys. Technol. 70, 147–152 (2015)CrossRef S.E. Godoy et al., Dynamic infrared imaging for skin cancer screening. Infrared Phys. Technol. 70, 147–152 (2015)CrossRef
36.
go back to reference A.A. Gurjarpadhye et al., Infrared imaging tools for diagnostic applications in dermatology. SM J. Clin. Med Imaging 1(1), 1–5 (2015) A.A. Gurjarpadhye et al., Infrared imaging tools for diagnostic applications in dermatology. SM J. Clin. Med Imaging 1(1), 1–5 (2015)
37.
go back to reference H. Makhloufi et al., Molecular beam epitaxy and properties of GaAsBi/GaAs quantum wells grown by molecular beam epitaxy: effect of thermal annealing. Nanoscale. Res. Lett. 9 (2014)CrossRef H. Makhloufi et al., Molecular beam epitaxy and properties of GaAsBi/GaAs quantum wells grown by molecular beam epitaxy: effect of thermal annealing. Nanoscale. Res. Lett. 9 (2014)CrossRef
38.
go back to reference T. Hosoda et al., Type-I GaSb-based laser diodes operating in 3.1 to 3.3 μm wavelength range. IEEE Phot. Tech. Lett. 22(10), 718–720 (2010)CrossRef T. Hosoda et al., Type-I GaSb-based laser diodes operating in 3.1 to 3.3 μm wavelength range. IEEE Phot. Tech. Lett. 22(10), 718–720 (2010)CrossRef
39.
go back to reference I. Sandall et al., Demonstration of InAsBi photoresponse beyond 3.5 μm. Appl. Phys. Lett. 104(17), 171109 (2013)CrossRef I. Sandall et al., Demonstration of InAsBi photoresponse beyond 3.5 μm. Appl. Phys. Lett. 104(17), 171109 (2013)CrossRef
40.
go back to reference I.P. Marko et al., Properties of hybrid MOVPE/MBE grown GaAsBi/GaAs based near-infrared emitting quantum well lasers. Semicond. Sci. Technol. 30, 094008-0910 (2015)CrossRef I.P. Marko et al., Properties of hybrid MOVPE/MBE grown GaAsBi/GaAs based near-infrared emitting quantum well lasers. Semicond. Sci. Technol. 30, 094008-0910 (2015)CrossRef
41.
go back to reference J. Chen et al., Effect of quantum well compressive strain above 1% on differential gain threshold current density in type-I GaSb-based diode lasers. IEEE J. Quant. Electr. 44(12), 1204–1201 (2008) J. Chen et al., Effect of quantum well compressive strain above 1% on differential gain threshold current density in type-I GaSb-based diode lasers. IEEE J. Quant. Electr. 44(12), 1204–1201 (2008)
42.
go back to reference J. Kopaczek et al., Photoreflectance spectroscopy of GaInSbBi and AlGaSbBi quaternary alloys. Appl. Phys. Lett. 105(11), 112102 (2014)CrossRef J. Kopaczek et al., Photoreflectance spectroscopy of GaInSbBi and AlGaSbBi quaternary alloys. Appl. Phys. Lett. 105(11), 112102 (2014)CrossRef
43.
go back to reference J. Puustinen et al., Variation of lattice constant and cluster formation in GaAsBi. J. Appl. Phys. 114(24), 243504 (2013)CrossRef J. Puustinen et al., Variation of lattice constant and cluster formation in GaAsBi. J. Appl. Phys. 114(24), 243504 (2013)CrossRef
44.
go back to reference J.R. Reboul et al., Continuous wave operation above room temperature of GaSb-based laser diodes grown on Si. Appl. Phys. Lett. 99(12), 121113 (2011)CrossRef J.R. Reboul et al., Continuous wave operation above room temperature of GaSb-based laser diodes grown on Si. Appl. Phys. Lett. 99(12), 121113 (2011)CrossRef
45.
go back to reference A. Janotti et al., Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs. Phys. Rev. B 65, 115203 (2002)CrossRef A. Janotti et al., Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs. Phys. Rev. B 65, 115203 (2002)CrossRef
46.
go back to reference B. Joukoff et al., Growth of InSb1-xBixsingle crystals by Czochralski method. J. Cryst. Growth 12(2), 169–172 (1972)CrossRef B. Joukoff et al., Growth of InSb1-xBixsingle crystals by Czochralski method. J. Cryst. Growth 12(2), 169–172 (1972)CrossRef
47.
go back to reference J. Kopaczek et al., Optical properties of GaAsBi/GaAs quantum wells: Photoreflectance, photoluminescence and time-resolved photoluminescence study. Semicond. Sci. Technol. 30, 094005 (2015)CrossRef J. Kopaczek et al., Optical properties of GaAsBi/GaAs quantum wells: Photoreflectance, photoluminescence and time-resolved photoluminescence study. Semicond. Sci. Technol. 30, 094005 (2015)CrossRef
48.
go back to reference R. Kudrawiec et al., Carrier localization in GaBiAs probed by photomodulated transmittance and photoluminescence. J. Appl. Phys. 106, 023518 (2009)CrossRef R. Kudrawiec et al., Carrier localization in GaBiAs probed by photomodulated transmittance and photoluminescence. J. Appl. Phys. 106, 023518 (2009)CrossRef
49.
go back to reference R. Kudrawiec et al., Experimental and theoretical studies of band gap alignment in GaAs1-xBix/GaAs quantum wells. J. Appl. Phys. 116, 233508 (2014)CrossRef R. Kudrawiec et al., Experimental and theoretical studies of band gap alignment in GaAs1-xBix/GaAs quantum wells. J. Appl. Phys. 116, 233508 (2014)CrossRef
50.
go back to reference L. Wang et al., Novel dilute bismide, epitaxy, physical properties and device application. Crystals 7(3), 63 (2017)CrossRef L. Wang et al., Novel dilute bismide, epitaxy, physical properties and device application. Crystals 7(3), 63 (2017)CrossRef
51.
go back to reference P. Lafaille et al., High temperature operation of short wavelength InAs-based quantum cascade lasers. AIP Adv. 2(2), 02219 (2012)CrossRef P. Lafaille et al., High temperature operation of short wavelength InAs-based quantum cascade lasers. AIP Adv. 2(2), 02219 (2012)CrossRef
52.
go back to reference H. Lee et al., Room-temperature 2.78 μm AlGaAsSb/InGaAsSb quantum-well lasers. Appl. Phys. Lett. 66, 1942 (1995)CrossRef H. Lee et al., Room-temperature 2.78 μm AlGaAsSb/InGaAsSb quantum-well lasers. Appl. Phys. Lett. 66, 1942 (1995)CrossRef
53.
go back to reference W. Linhart et al., Indium-incorporation enhancement of photoluminescence properties of Ga(In)SbBi alloys. J. Phys. D Appl. Phys. 50, 375102 (2017)CrossRef W. Linhart et al., Indium-incorporation enhancement of photoluminescence properties of Ga(In)SbBi alloys. J. Phys. D Appl. Phys. 50, 375102 (2017)CrossRef
54.
go back to reference C. Liu et al., Quantum spin hall effect in inverted type-II semiconductors. Phys. Rev. Lett. 100, 236601 (2008)CrossRef C. Liu et al., Quantum spin hall effect in inverted type-II semiconductors. Phys. Rev. Lett. 100, 236601 (2008)CrossRef
55.
go back to reference J. Lu et al., Investigation of MBE-grown InAs1 − xBix alloys and Bi-mediated type-II superlattices by transmission electron microscopy. J. Cryst. Growth 425, 250 (2015)CrossRef J. Lu et al., Investigation of MBE-grown InAs1 − xBix alloys and Bi-mediated type-II superlattices by transmission electron microscopy. J. Cryst. Growth 425, 250 (2015)CrossRef
56.
go back to reference J. Lu et al., Evaluation of antimony segregation in InAs/InAs1−xSbx type-II superlattices grown by molecular beam epitaxy. J. Appl. Phys. 119, 095702 (2016)CrossRef J. Lu et al., Evaluation of antimony segregation in InAs/InAs1−xSbx type-II superlattices grown by molecular beam epitaxy. J. Appl. Phys. 119, 095702 (2016)CrossRef
57.
go back to reference E. Luna et al., Indium distribution at the interfaces of (Ga, In)(N, As)/GaAs quantum wells. Appl. Phys. Lett. 92, 141913 (2008)CrossRef E. Luna et al., Indium distribution at the interfaces of (Ga, In)(N, As)/GaAs quantum wells. Appl. Phys. Lett. 92, 141913 (2008)CrossRef
58.
go back to reference E. Luna et al., Interface properties of (Ga, In)(N, As) and (Ga, In)(As, Sb) materials systems grown by molecular beam epitaxy. J. Cryst. Growth 311, 1739 (2009)CrossRef E. Luna et al., Interface properties of (Ga, In)(N, As) and (Ga, In)(As, Sb) materials systems grown by molecular beam epitaxy. J. Cryst. Growth 311, 1739 (2009)CrossRef
59.
go back to reference E. Luna et al., Critical role of two-dimensional island-mediated growth on the formation of semiconductor heterointerfaces. Phys. Rev. Lett. 109, 126101 (2012)CrossRef E. Luna et al., Critical role of two-dimensional island-mediated growth on the formation of semiconductor heterointerfaces. Phys. Rev. Lett. 109, 126101 (2012)CrossRef
60.
go back to reference E. Luna et al., Spontaneous formation of nanostructures by surface spinodal decomposition in GaAs1−xBix epilayers. J. Appl. Phys. 117, 185302 (2015)CrossRef E. Luna et al., Spontaneous formation of nanostructures by surface spinodal decomposition in GaAs1−xBix epilayers. J. Appl. Phys. 117, 185302 (2015)CrossRef
61.
go back to reference E. Luna et al., Morphological and chemical instabilities of nitrogen delta-doped GaAs/(Al, Ga) As quantum wells. Appl. Phys. Lett. 110, 201906 (2017)CrossRef E. Luna et al., Morphological and chemical instabilities of nitrogen delta-doped GaAs/(Al, Ga) As quantum wells. Appl. Phys. Lett. 110, 201906 (2017)CrossRef
62.
go back to reference E. Luna et al., Microstructure and interface analysis of emerging Ga (Sb, Bi) epilayers and Ga (Sb, Bi)/GaSb quantum wells for optoelectronic applications. Appl. Phys. Lett. 112, 151905 (2018)CrossRef E. Luna et al., Microstructure and interface analysis of emerging Ga (Sb, Bi) epilayers and Ga (Sb, Bi)/GaSb quantum wells for optoelectronic applications. Appl. Phys. Lett. 112, 151905 (2018)CrossRef
63.
go back to reference E. Luna et al., Transmission electron microscopy of Ga(Sb, Bi)/GaSb quantum wells with varying Bi content and quantum well thickness. Semicond. Sci. Technol. 33, 094006 (2018)CrossRef E. Luna et al., Transmission electron microscopy of Ga(Sb, Bi)/GaSb quantum wells with varying Bi content and quantum well thickness. Semicond. Sci. Technol. 33, 094006 (2018)CrossRef
64.
go back to reference M.K. Rajpalke et al., High Bi content GaSbBi alloys. J. Appl. Phys. 116(4), 043511 (2014)CrossRef M.K. Rajpalke et al., High Bi content GaSbBi alloys. J. Appl. Phys. 116(4), 043511 (2014)CrossRef
65.
go back to reference M.P. Polak et al., in Theoretical and experimental studies of electronic band structure for GaSb1−xBix in the dilute Bi regime. J. Phys. D: Appl. Phys. 47(35), 355107 (2014) M.P. Polak et al., in Theoretical and experimental studies of electronic band structure for GaSb1−xBix in the dilute Bi regime. J. Phys. D: Appl. Phys. 47(35), 355107 (2014)
66.
go back to reference J.W. Matthews, A.E. Blakeslee, Defects in epitaxial multilayers. J. Cryst. Growth 27, 118 (1974) J.W. Matthews, A.E. Blakeslee, Defects in epitaxial multilayers. J. Cryst. Growth 27, 118 (1974)
67.
go back to reference J. Misiewicz, R. Kudrawiec, Contactless electroreflectance spectroscopy of optical transitions in low dimensional semiconductor structures. Opto-Electron. Rev. 20, 101 (2012)CrossRef J. Misiewicz, R. Kudrawiec, Contactless electroreflectance spectroscopy of optical transitions in low dimensional semiconductor structures. Opto-Electron. Rev. 20, 101 (2012)CrossRef
68.
go back to reference K. Muraki et al., Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells. Appl. Phys. Lett. 61, 557 (1992)CrossRef K. Muraki et al., Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells. Appl. Phys. Lett. 61, 557 (1992)CrossRef
69.
go back to reference Nguyen-Van et al., Quantum cascade lasers grown on silicon. Sci. Rep. 8, 7206 (2018)CrossRef Nguyen-Van et al., Quantum cascade lasers grown on silicon. Sci. Rep. 8, 7206 (2018)CrossRef
70.
go back to reference A.J. Noreika et al., Indium antimonide-bismuth compositions grown by molecular beam epitaxy. J. Appl. Phys. 53(7), 4932–4937 (1982)CrossRef A.J. Noreika et al., Indium antimonide-bismuth compositions grown by molecular beam epitaxy. J. Appl. Phys. 53(7), 4932–4937 (1982)CrossRef
71.
go back to reference A.G. Norman et al., Atomic ordering and phase separation in MBE GaAs1−xBix. J. Vac. Sci. Technol. B 29, 03C121 (2011)CrossRef A.G. Norman et al., Atomic ordering and phase separation in MBE GaAs1−xBix. J. Vac. Sci. Technol. B 29, 03C121 (2011)CrossRef
72.
go back to reference K. Oe, Metalorganic vapour phase epitaxial growth of metastable GaAs1−xBix alloy. J. Cryst. Growth 237, 1481–1485 (2002)CrossRef K. Oe, Metalorganic vapour phase epitaxial growth of metastable GaAs1−xBix alloy. J. Cryst. Growth 237, 1481–1485 (2002)CrossRef
73.
go back to reference R. O’Malley et al., Detection of pedestrians in far-infrared automotive night vision using region-growing and clothing distortion compensation. Infrared Phys. Technol. 53, 439–449 (2010)CrossRef R. O’Malley et al., Detection of pedestrians in far-infrared automotive night vision using region-growing and clothing distortion compensation. Infrared Phys. Technol. 53, 439–449 (2010)CrossRef
74.
go back to reference P. Ludewig et al., Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser. Appl. Phys. Lett. 102(24), 242115 (2013)CrossRef P. Ludewig et al., Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser. Appl. Phys. Lett. 102(24), 242115 (2013)CrossRef
75.
go back to reference P.A Doyle, P.S. Turner “Relativistic Hartree-Fock X-ray and electron scattering factors” Acta Crystallogr. Sect. A 24, 390 (1968)CrossRef P.A Doyle, P.S. Turner “Relativistic Hartree-Fock X-ray and electron scattering factors” Acta Crystallogr. Sect. A 24, 390 (1968)CrossRef
76.
go back to reference P.K. Patil et al., GaAsBi/GaAs multi-quantum well LED grown by molecular beam epitaxy using a two-substrate-temperature technique. Nanotechnology 28(10), 105702 (2017)CrossRef P.K. Patil et al., GaAsBi/GaAs multi-quantum well LED grown by molecular beam epitaxy using a two-substrate-temperature technique. Nanotechnology 28(10), 105702 (2017)CrossRef
77.
go back to reference Z. Pan et al., Kinetic modeling of N incorporation in GaInNAs growth by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 77, 214 (2000)CrossRef Z. Pan et al., Kinetic modeling of N incorporation in GaInNAs growth by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 77, 214 (2000)CrossRef
78.
go back to reference R. Pecharoman-Gallego, Quantum cascade lasers: review, applications and prospective development. Lasers Eng. 24(5–6), 277–314 (2013) R. Pecharoman-Gallego, Quantum cascade lasers: review, applications and prospective development. Lasers Eng. 24(5–6), 277–314 (2013)
79.
go back to reference M. Polak et al., First-principles calculations of bismuth induced changes in the band structure of dilute Ga–V–Bi and In–V–Bi alloys: chemical trends versus experimental data. Semicond. Sci. Technol. 30, 094001 (2015)CrossRef M. Polak et al., First-principles calculations of bismuth induced changes in the band structure of dilute Ga–V–Bi and In–V–Bi alloys: chemical trends versus experimental data. Semicond. Sci. Technol. 30, 094001 (2015)CrossRef
80.
go back to reference M.P.J. Punkkinen et al., Thermodynamics of the pseudobinary GaAs1−xBix (0 ≤ x ≤ 1) alloys studied by different exchange-correlation functionals, special quasi-random structures and Monte Carlo simulations. Comput. Condens. Matter 5, 7 (2015)CrossRef M.P.J. Punkkinen et al., Thermodynamics of the pseudobinary GaAs1−xBix (0 ≤ x ≤ 1) alloys studied by different exchange-correlation functionals, special quasi-random structures and Monte Carlo simulations. Comput. Condens. Matter 5, 7 (2015)CrossRef
81.
go back to reference R. Butkutė et al., Bismuth quantum dots in annealed GaAsBi/AlAs quantum wells. Nanoscale Res. Lett. 12:436 (2017) R. Butkutė et al., Bismuth quantum dots in annealed GaAsBi/AlAs quantum wells. Nanoscale Res. Lett. 12:436 (2017)
82.
go back to reference R. Kudrawiec et al., Type I GaSb1-xBix/GaSb quantum wells dedicated for mid infrared laser applications: Photoreflectance studies of band gap alignment. Phys. Rev. Appl. (2018) (submitted (2018) R. Kudrawiec et al., Type I GaSb1-xBix/GaSb quantum wells dedicated for mid infrared laser applications: Photoreflectance studies of band gap alignment. Phys. Rev. Appl. (2018) (submitted (2018)
83.
go back to reference R.B. Lewis et al., Growth of high Bi concentration GaAs1−xBix by molecular beam epitaxy. Appl. Phys. Lett. 100(5), 082112, (2012) R.B. Lewis et al., Growth of high Bi concentration GaAs1−xBix by molecular beam epitaxy. Appl. Phys. Lett. 100(5), 082112, (2012)
84.
go back to reference M.K. Rajpalke et al., Growth and properties of GaSbBi alloys. Appl. Phys. Lett. 103, 142106 (2013)CrossRef M.K. Rajpalke et al., Growth and properties of GaSbBi alloys. Appl. Phys. Lett. 103, 142106 (2013)CrossRef
85.
go back to reference M.K. Rajpalke et al., Bi flux-dependent MBE growth of GaSbBi alloys. J. Cryst. Growth 425, 241–244 (2015)CrossRef M.K. Rajpalke et al., Bi flux-dependent MBE growth of GaSbBi alloys. J. Cryst. Growth 425, 241–244 (2015)CrossRef
86.
go back to reference M. Razeghi et al., Advances in mid-infrared detection and imaging: a key issues review. Rep. Prog. Phys. 77, 082401 (2014)CrossRef M. Razeghi et al., Advances in mid-infrared detection and imaging: a key issues review. Rep. Prog. Phys. 77, 082401 (2014)CrossRef
87.
go back to reference D.F. Reyes et al., Bismuth incorporation and the role of ordering in GaAsBi/GaAs structures. Nanoscale Res. Lett. 9, 23 (2014)CrossRef D.F. Reyes et al., Bismuth incorporation and the role of ordering in GaAsBi/GaAs structures. Nanoscale Res. Lett. 9, 23 (2014)CrossRef
88.
go back to reference D.R. Rhiger, Performance comparison of long-wavelength infrared type II superlattice devices with HgCdTe. J. Electron. Mater. 40, 1815 (2011)CrossRef D.R. Rhiger, Performance comparison of long-wavelength infrared type II superlattice devices with HgCdTe. J. Electron. Mater. 40, 1815 (2011)CrossRef
89.
go back to reference L.S. Rothman et al., The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110(9–10), 533–572 (2009)CrossRef L.S. Rothman et al., The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110(9–10), 533–572 (2009)CrossRef
90.
go back to reference D.L. Sales et al., Distribution of bismuth atoms in epitaxial GaAsBi. Appl. Phys. Lett. 98, 101902 (2011)CrossRef D.L. Sales et al., Distribution of bismuth atoms in epitaxial GaAsBi. Appl. Phys. Lett. 98, 101902 (2011)CrossRef
92.
go back to reference M.K. Shakfa et al., Quantitative study of localization effects and recombination dynamics in GaAsBi/GaAs single quantum wells. J. Appl. Phys. 114, 164306 (2013)CrossRef M.K. Shakfa et al., Quantitative study of localization effects and recombination dynamics in GaAsBi/GaAs single quantum wells. J. Appl. Phys. 114, 164306 (2013)CrossRef
93.
go back to reference J.A. Steele et al., Surface effects of vapour-liquid-solid driven Bi surface droplets formed during molecular-beam-epitaxy of GaAsBi. Scientific Reports 6, 28860 (2016)CrossRef J.A. Steele et al., Surface effects of vapour-liquid-solid driven Bi surface droplets formed during molecular-beam-epitaxy of GaAsBi. Scientific Reports 6, 28860 (2016)CrossRef
94.
go back to reference Sweeney-13, Bismide-nitride alloys: Promising for efficient light emitting devices in the near- and mid-infrared. J. Appl. Phys. 113, 043110 (2013)CrossRef Sweeney-13, Bismide-nitride alloys: Promising for efficient light emitting devices in the near- and mid-infrared. J. Appl. Phys. 113, 043110 (2013)CrossRef
95.
go back to reference C.R. Tait et al., Droplet induced compositional inhomogeneities in GaAsBi. Appl. Phys. Lett. 111, 042105 (2017)CrossRef C.R. Tait et al., Droplet induced compositional inhomogeneities in GaAsBi. Appl. Phys. Lett. 111, 042105 (2017)CrossRef
96.
go back to reference B.-S. Tan et al., The 640 × 512 LWIR type-II superlattice detectors operating at 110 K. Infrared Phys. Techn. 89, 168–173 (2018)CrossRef B.-S. Tan et al., The 640 × 512 LWIR type-II superlattice detectors operating at 110 K. Infrared Phys. Techn. 89, 168–173 (2018)CrossRef
97.
go back to reference M.Z. Tidrow et al., Infrared sensors for ballistic missile defense. Infrared Phys. Technol. 42(3–5), 333 (2001)CrossRef M.Z. Tidrow et al., Infrared sensors for ballistic missile defense. Infrared Phys. Technol. 42(3–5), 333 (2001)CrossRef
98.
go back to reference T. Tiedje et al., Growth and properties of the dilute bismide semiconductor GaAs1−xBix a complementary alloy to the dilute nitrides. Int. J. Nanotechnol. 5, 963 (2008)CrossRef T. Tiedje et al., Growth and properties of the dilute bismide semiconductor GaAs1−xBix a complementary alloy to the dilute nitrides. Int. J. Nanotechnol. 5, 963 (2008)CrossRef
99.
go back to reference S. Tixier et al., Surfactant enhanced growth of GaNAs and InGaNAs using bismuth. J. Cryst. Growth 251(1–4), 449–454 (2003)CrossRef S. Tixier et al., Surfactant enhanced growth of GaNAs and InGaNAs using bismuth. J. Cryst. Growth 251(1–4), 449–454 (2003)CrossRef
100.
go back to reference S. Tixier et al., Molecular beam epitaxy growth of GaAs1-xBix. Appl. Phys. Lett. 82(14), 2245–2247 (2003)CrossRef S. Tixier et al., Molecular beam epitaxy growth of GaAs1-xBix. Appl. Phys. Lett. 82(14), 2245–2247 (2003)CrossRef
101.
go back to reference A. Trampert et al., Correlation between interface structure and light emission at 1.3–1.55 μm of (Ga, In)(N, As) diluted nitride heterostructures on GaAs substrates. J. Vac. Sci. Technol. B 22, 2195 (2004)CrossRef A. Trampert et al., Correlation between interface structure and light emission at 1.3–1.55 μm of (Ga, In)(N, As) diluted nitride heterostructures on GaAs substrates. J. Vac. Sci. Technol. B 22, 2195 (2004)CrossRef
102.
go back to reference K. Volz et al., Detection of nanometer-sized strain fields in (GaIn)(NAs) alloys by specific dark field transmission electron microscopic imaging. J. Appl. Phys. 97, 014306 (2005)CrossRef K. Volz et al., Detection of nanometer-sized strain fields in (GaIn)(NAs) alloys by specific dark field transmission electron microscopic imaging. J. Appl. Phys. 97, 014306 (2005)CrossRef
103.
go back to reference I. Vurgaftman et al., Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001)CrossRef I. Vurgaftman et al., Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001)CrossRef
104.
go back to reference I. Vurgaftman et al., Interband cascade lasers. J. Phys. D Appl. Phys. 48, 123001 (2015)CrossRef I. Vurgaftman et al., Interband cascade lasers. J. Phys. D Appl. Phys. 48, 123001 (2015)CrossRef
105.
go back to reference W. Linhart et al., Weak carrier localization in GaSbBi/GaSb QWs studied by photoluminescence and time resolved photoluminescence. Appl. Phys. Lett. (2018) (to be Submitted) W. Linhart et al., Weak carrier localization in GaSbBi/GaSb QWs studied by photoluminescence and time resolved photoluminescence. Appl. Phys. Lett. (2018) (to be Submitted)
106.
go back to reference M.C. Wagener et al., Characterization of secondary phases formed during MOVPE growth of InSbBi mixed crystals. J. Cryst. Growth 213(1–2), 51–56 (2000)CrossRef M.C. Wagener et al., Characterization of secondary phases formed during MOVPE growth of InSbBi mixed crystals. J. Cryst. Growth 213(1–2), 51–56 (2000)CrossRef
107.
go back to reference Y. Wei et al., Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 µm. Appl. Phys. Lett. 81, 3675 (2002)CrossRef Y. Wei et al., Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 µm. Appl. Phys. Lett. 81, 3675 (2002)CrossRef
108.
go back to reference U. Willer et al., Near- and mid-infrared laser monitoring of industrial processes, environment and security applications. Opt. Lasers Eng. 44(7), 699 (2006)CrossRef U. Willer et al., Near- and mid-infrared laser monitoring of industrial processes, environment and security applications. Opt. Lasers Eng. 44(7), 699 (2006)CrossRef
109.
go back to reference G. Winnewisser, Submillimeter and infrared astronomy. Infrared Phys. Technol. 35(2/3), 551 (1994)CrossRef G. Winnewisser, Submillimeter and infrared astronomy. Infrared Phys. Technol. 35(2/3), 551 (1994)CrossRef
110.
go back to reference C.E.C. Wood et al., Magnesium- and calcium-doping behavior in molecular-beam epitaxial III-V compounds. J. Appl. Phys. 53, 4230 (1982)CrossRef C.E.C. Wood et al., Magnesium- and calcium-doping behavior in molecular-beam epitaxial III-V compounds. J. Appl. Phys. 53, 4230 (1982)CrossRef
111.
go back to reference A.W. Wood et al., Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs1−xBix films. Nanotechnology 27, 115704 (2016)CrossRef A.W. Wood et al., Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs1−xBix films. Nanotechnology 27, 115704 (2016)CrossRef
112.
go back to reference A.W. Wood et al., Annealing-induced precipitate formation behavior in MOVPE-grown GaAs1−xBix explored by atom probe tomography and HAADF-STEM. Nanotechnology 28, 215704 (2017)CrossRef A.W. Wood et al., Annealing-induced precipitate formation behavior in MOVPE-grown GaAs1−xBix explored by atom probe tomography and HAADF-STEM. Nanotechnology 28, 215704 (2017)CrossRef
113.
go back to reference M. Wu et al., Formation and phase transformation of Bi-containing QD-like clusters in annealed GaAsBi. Nanotechnology 25, 205605 (2014)CrossRef M. Wu et al., Formation and phase transformation of Bi-containing QD-like clusters in annealed GaAsBi. Nanotechnology 25, 205605 (2014)CrossRef
114.
go back to reference M. Wu et al., Observation of atomic ordering of triple-period-A and-B type in GaAsBi. Appl. Phys. Lett. 105, 041602 (2014)CrossRef M. Wu et al., Observation of atomic ordering of triple-period-A and-B type in GaAsBi. Appl. Phys. Lett. 105, 041602 (2014)CrossRef
115.
go back to reference M. Wu et al., Detecting lateral composition modulation in dilute Ga(As, Bi) epilayers. Nanotechnology 26, 425701 (2015)CrossRef M. Wu et al., Detecting lateral composition modulation in dilute Ga(As, Bi) epilayers. Nanotechnology 26, 425701 (2015)CrossRef
116.
go back to reference X. Wu et al., 1.142 μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy. ACS Photonics 4, 1322 (2017)CrossRef X. Wu et al., 1.142 μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy. ACS Photonics 4, 1322 (2017)CrossRef
117.
go back to reference Y. Gu et al., Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy. Nanoscale. Res. Lett. 9 (2014)CrossRef Y. Gu et al., Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy. Nanoscale. Res. Lett. 9 (2014)CrossRef
118.
go back to reference Y. Song et al., Growth of GaSb1-xBix by molecular beam epitaxy. J. Vac. Sc. Technol. B 30(2), 02B114, (2012) Y. Song et al., Growth of GaSb1-xBix by molecular beam epitaxy. J. Vac. Sc. Technol. B 30(2), 02B114, (2012)
119.
go back to reference M. Yoshimoto et al., Metastable GaAsBi alloy grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 42(10B), L1235–L1237 (2003)CrossRef M. Yoshimoto et al., Metastable GaAsBi alloy grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 42(10B), L1235–L1237 (2003)CrossRef
120.
go back to reference L. Yue et al., Molecular beam epitaxy growth and optical properties of high bismuth content GaSb1−xBix thin films. J. Alloys Compd. 742, 780 (2018)CrossRef L. Yue et al., Molecular beam epitaxy growth and optical properties of high bismuth content GaSb1−xBix thin films. J. Alloys Compd. 742, 780 (2018)CrossRef
121.
go back to reference L. Yue et al., Structural and optical properties of GaSbBi/GaSb quantum wells. Opt. Mat. Express 8, 893–900 (2018)CrossRef L. Yue et al., Structural and optical properties of GaSbBi/GaSb quantum wells. Opt. Mat. Express 8, 893–900 (2018)CrossRef
122.
go back to reference Y.C. Zhang et al., Wavelength extension in GaSbBi quantum wells using delta-doping. J. Alloy. Compd. 744, 667–671 (2018)CrossRef Y.C. Zhang et al., Wavelength extension in GaSbBi quantum wells using delta-doping. J. Alloy. Compd. 744, 667–671 (2018)CrossRef
Metadata
Title
GaSbBi Alloys and Heterostructures: Fabrication and Properties
Authors
O. Delorme
L. Cerutti
R. Kudrawiec
Esperanza Luna
J. Kopaczek
M. Gladysiewicz
A. Trampert
E. Tournié
J.-B. Rodriguez
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8078-5_6