Skip to main content
Top

2025 | OriginalPaper | Chapter

General Damage Detections on Composite Panels Using Computer Vision Algorithms

Authors : Salvatore Merola, Michele Guida, Francesco Marulo

Published in: Dynamic Response and Failure of Composite Materials

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study aims to present a novel approach for composite panel inspection to identify Barely Visible Impact Damage (BVID) and Visible Impact Damage (VID), using computer vision algorithms. A new methodology for visual inspections was developed using computer vision algorithms is based on the YOLO - You Only Look Once architecture about the aircraft composite components, that use digital optics and deep learning techniques to identify and classify damages. Computer vision algorithms are used as instruments for automating the process of surface inspection and damage detection, increasing productivity and safety for maintenance operators (in the case of inspection of remote areas of aircraft). An overview of the problems, methods, and recent developments in deep learning algorithms used for general damage detection is provided. Data for Convolutional Neural Network (CNN) training were collected using a high-quality acquisition system. The database was populated by collecting images with damages from many composite panels, previously damaged by different impactors. Each defect has been photographed under different lighting conditions (bright or dark), resolution, and lighting angles to accurately simulate the environmental conditions of an aircraft maintenance hangar.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Spencer, F.W.: Visual Inspection Research Project Report on Benchmark Inspections. Technical Report No DOT/FAA/AR-96/65, U.S. Department of Transportation, Feder- al Aviation Administration, Washington, D.C., USA (1996) Spencer, F.W.: Visual Inspection Research Project Report on Benchmark Inspections. Technical Report No DOT/FAA/AR-96/65, U.S. Department of Transportation, Feder- al Aviation Administration, Washington, D.C., USA (1996)
2.
go back to reference EASA Final Report. Research Project: Study on Visual Inspection of Composite Structures. European Aviation Safety Agency (2009) EASA Final Report. Research Project: Study on Visual Inspection of Composite Structures. European Aviation Safety Agency (2009)
3.
go back to reference ATA MSG3: Operator/Manufacturer Scheduled Maintenance Development, Revision 2003.1. Air Transport Association of America, Washington, DC 20004-1707 ATA MSG3: Operator/Manufacturer Scheduled Maintenance Development, Revision 2003.1. Air Transport Association of America, Washington, DC 20004-1707
4.
go back to reference Composite Aircraft Structure. FAA AC20-107A (1984) Composite Aircraft Structure. FAA AC20-107A (1984)
5.
go back to reference EASA: AMC No.1 to CS 25.603, CS 25 Book 2 (2007) EASA: AMC No.1 to CS 25.603, CS 25 Book 2 (2007)
6.
go back to reference Fualdes, C.: Composites @ Airbus - Damage tolerance methodology. In: Presentation at the Composite Damage Tolerance and Maintenance. Chicago, July 19–21 (2006) Fualdes, C.: Composites @ Airbus - Damage tolerance methodology. In: Presentation at the Composite Damage Tolerance and Maintenance. Chicago, July 19–21 (2006)
7.
go back to reference Visual inspection for aircraft. FAA AC 43-204 (1997) Visual inspection for aircraft. FAA AC 43-204 (1997)
8.
go back to reference Merola, S., Guida, M., Marulo, F.: Digital optics and machine learning algorithms for aircraft maintenance. Mater. Res. Proc. 42, 18 (2024)CrossRef Merola, S., Guida, M., Marulo, F.: Digital optics and machine learning algorithms for aircraft maintenance. Mater. Res. Proc. 42, 18 (2024)CrossRef
9.
go back to reference Chitradevi, B., Srimathi, P.: An overview of image processing techniques. Int. J. Innov. Res. Comput. Commun. Eng. 2(11), 6466–6472 (2014) Chitradevi, B., Srimathi, P.: An overview of image processing techniques. Int. J. Innov. Res. Comput. Commun. Eng. 2(11), 6466–6472 (2014)
10.
go back to reference Mathew, A., Amudha, P., Sivakumari, S.: Deep learning techniques: an overview. Arch. Comput. Methods Eng. 28, 599–608 (2021) Mathew, A., Amudha, P., Sivakumari, S.: Deep learning techniques: an overview. Arch. Comput. Methods Eng. 28, 599–608 (2021)
11.
go back to reference Shuyuan, et al.: Computer vision techniques in construction: a critical review. In: Advanced Machine Learning Technologies, and Applications: Proceedings of AMLTA 2020, pp. 3383–3397 (2021) Shuyuan, et al.: Computer vision techniques in construction: a critical review. In: Advanced Machine Learning Technologies, and Applications: Proceedings of AMLTA 2020, pp. 3383–3397 (2021)
12.
go back to reference Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
14.
go back to reference Terven, J., Córdova-Esparza, D.-M., Romero-González, J.-A.: A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO- NAS. Mach. Learn. Knowl. Extract. 5, 1680 (2023)CrossRef Terven, J., Córdova-Esparza, D.-M., Romero-González, J.-A.: A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO- NAS. Mach. Learn. Knowl. Extract. 5, 1680 (2023)CrossRef
15.
go back to reference Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J.: A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 33(12), 6999–7019 (2022)CrossRefPubMed Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J.: A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 33(12), 6999–7019 (2022)CrossRefPubMed
16.
17.
go back to reference Terven, J., Cordova-Esparza, D.M., Ramirez-Pedraza, A., Chavez-Urbiola, E.A.: Loss Functions and Metrics in Deep Learning. A Review (2023). arXiv preprint arXiv:2307.02694 Terven, J., Cordova-Esparza, D.M., Ramirez-Pedraza, A., Chavez-Urbiola, E.A.: Loss Functions and Metrics in Deep Learning. A Review (2023). arXiv preprint arXiv:​2307.​02694
18.
go back to reference Zhang, Z.: Improved Adam optimizer for deep neural networks. In: IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), pp. 1–2 (2018) Zhang, Z.: Improved Adam optimizer for deep neural networks. In: IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), pp. 1–2 (2018)
Metadata
Title
General Damage Detections on Composite Panels Using Computer Vision Algorithms
Authors
Salvatore Merola
Michele Guida
Francesco Marulo
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-77697-7_8

Premium Partners