Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. General Data on Carbon Allotropes

Authors : Boris Ildusovich Kharisov, Oxana Vasilievna Kharissova

Published in: Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon, the 6th element in the periodic table denoted by the letter “C” and true element of life, provides the chemical basis for life on Earth due to its ability to form stable bonds with other carbon atoms, oxygen, nitrogen, sulfur, and many other elements in Mendeleev’s Periodic Table. Carbon is found almost everywhere, and it is one of the most abundant materials on earth. It is the 4th most common element in the universe and 15th most common on earth’s crust. All life on Earth contains various forms of carbonic structures, from proteins to the tallest trees [1]. Existence of a host of carbon inorganic forms is the also responsibility of stable single and multiple carbon-carbon covalent bonds. This process is called catenation, in which an element can bond with itself to form long chains. During much time, only two conventional carbon allotropes, graphite (black, soft, and conductive) and diamond (shiny, transparent, and extremely hard), have been known. Only in the last few decades have new synthetic carbon allotropes such as carbon nanotubes, fullerenes (buckminsterfullerene C60, smaller and higher fullerenes), and graphene been discovered. Their outstanding properties, current and potential applications, testify their unique scientific and technological importance [2]. In addition, a host of other carbon structures, both obtained and still predicted, have been reported up to date.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
C60 fullerenes are now recognized by chemists as one of the three forms of true elemental carbon (along with graphite and diamond).
 
2
Approximately two tens of various carbyne-like materials differing in structural parameters have been artificially synthesized and revealed in nature to date.
 
3
Distinct nanostructures, united according to the synthesis method
 
Literature
1.
go back to reference G.E.J. Poinern, A laboratory course in nanoscience and nanotechnology (CRC Press, Boca Raton, 2015). 230 pp. G.E.J. Poinern, A laboratory course in nanoscience and nanotechnology (CRC Press, Boca Raton, 2015). 230 pp.
2.
3.
go back to reference B. Pan, J. Xiao, J. Li, P. Liu, C. Wang, G. Yang, Carbyne with finite length: The one-dimensional sp carbon. Sci. Adv. 1(9), e1500857 (2015)CrossRef B. Pan, J. Xiao, J. Li, P. Liu, C. Wang, G. Yang, Carbyne with finite length: The one-dimensional sp carbon. Sci. Adv. 1(9), e1500857 (2015)CrossRef
4.
go back to reference B. Lesiak, L. Kövér, J. Tóth, et al., C sp2/sp3 hybridisations in carbon nanomaterials – XPS and (X)AES study. Appl. Surf. Sci. 452, 223–231 (2018)CrossRef B. Lesiak, L. Kövér, J. Tóth, et al., C sp2/sp3 hybridisations in carbon nanomaterials – XPS and (X)AES study. Appl. Surf. Sci. 452, 223–231 (2018)CrossRef
5.
go back to reference L.A. Burchfield, M. AlFahim, R.S. Wittman, F. Delodovicic, N. Manini, Novamene: a new class of carbon allotropes. Heliyon 3(2), e00242 (2017)CrossRef L.A. Burchfield, M. AlFahim, R.S. Wittman, F. Delodovicic, N. Manini, Novamene: a new class of carbon allotropes. Heliyon 3(2), e00242 (2017)CrossRef
6.
go back to reference A. Seral-Ascaso, R. Garriga, M.L. Sanjuán, et al., ‘Laser chemistry’ synthesis, physicochemical properties, and chemical processing of nanostructured carbon foams. Nanoscale Res. Lett. 8, 233 (2013)CrossRef A. Seral-Ascaso, R. Garriga, M.L. Sanjuán, et al., ‘Laser chemistry’ synthesis, physicochemical properties, and chemical processing of nanostructured carbon foams. Nanoscale Res. Lett. 8, 233 (2013)CrossRef
7.
go back to reference Z. Zeng, L. Yang, Q. Zeng, H. Lou, et al., Synthesis of quenchable amorphous diamond. Nat. Commun. 8 (2017). Article number: 322 Z. Zeng, L. Yang, Q. Zeng, H. Lou, et al., Synthesis of quenchable amorphous diamond. Nat. Commun. 8 (2017). Article number: 322
8.
go back to reference P.S. Karthik, A.L. Himaja, S. Prakash Singh, Carbon-allotropes: synthesis methods, applications and future perspectives. Carbon Lett. 15(4), 219–237 (2014)CrossRef P.S. Karthik, A.L. Himaja, S. Prakash Singh, Carbon-allotropes: synthesis methods, applications and future perspectives. Carbon Lett. 15(4), 219–237 (2014)CrossRef
9.
go back to reference C.S. Casari, M. Tommasini, R.R. Tykwinski, A. Milani, Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 8, 4414–4435 (2016)CrossRef C.S. Casari, M. Tommasini, R.R. Tykwinski, A. Milani, Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 8, 4414–4435 (2016)CrossRef
10.
go back to reference A. Mostofizadeh, Y. Li, B. Song, Y. Huang, Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials. J. Nanomater. 2011., Article ID 685081, 21 (2011)CrossRef A. Mostofizadeh, Y. Li, B. Song, Y. Huang, Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials. J. Nanomater. 2011., Article ID 685081, 21 (2011)CrossRef
11.
go back to reference J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57, 724–803 (2012)CrossRef J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57, 724–803 (2012)CrossRef
12.
go back to reference N. Aich, J. Plazas-Tuttle, J.R. Lead, N.B. Saleh, A critical review of nanohybrids: synthesis, applications and environmental implications. Environ. Chem. 11, 609–623 (2014)CrossRef N. Aich, J. Plazas-Tuttle, J.R. Lead, N.B. Saleh, A critical review of nanohybrids: synthesis, applications and environmental implications. Environ. Chem. 11, 609–623 (2014)CrossRef
13.
go back to reference V. Thanh Dang, D. Dung Nguyen, T. Thanh Cao, et al., Recent trends in preparation and application of carbon nanotube–graphene hybrid thin films. Adv. Nat. Sci. Nanosci. Nanotechnol 7, 033002 (2016)CrossRef V. Thanh Dang, D. Dung Nguyen, T. Thanh Cao, et al., Recent trends in preparation and application of carbon nanotube–graphene hybrid thin films. Adv. Nat. Sci. Nanosci. Nanotechnol 7, 033002 (2016)CrossRef
14.
go back to reference A.C. Tripathi, S.A. Saraf, S.K. Saraf, Carbon nanotropes: a contemporary paradigm in drug delivery. Materials 8, 3068–3100 (2015)CrossRef A.C. Tripathi, S.A. Saraf, S.K. Saraf, Carbon nanotropes: a contemporary paradigm in drug delivery. Materials 8, 3068–3100 (2015)CrossRef
15.
go back to reference F. Delodovici, N. Manini, R.S. Wittman, D.S. Choi, M. Al Fahim, L.A. Burchfield, Protomene: a new carbon allotrope. Carbon 126, 574–579 (2018)CrossRef F. Delodovici, N. Manini, R.S. Wittman, D.S. Choi, M. Al Fahim, L.A. Burchfield, Protomene: a new carbon allotrope. Carbon 126, 574–579 (2018)CrossRef
16.
go back to reference L.A. Burchfield, M. Al Fahim, R.S. Wittman, F. Delodovici, N. Manini, Novamene: a new class of carbon allotropes. Heliyon 3, e00242 (2017)CrossRef L.A. Burchfield, M. Al Fahim, R.S. Wittman, F. Delodovici, N. Manini, Novamene: a new class of carbon allotropes. Heliyon 3, e00242 (2017)CrossRef
18.
go back to reference S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, P. Jena, Penta-graphene: a new carbon allotrope. Proc. Natl. Acad. Sci. 112(8), 2372–2377 (2015)CrossRef S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, P. Jena, Penta-graphene: a new carbon allotrope. Proc. Natl. Acad. Sci. 112(8), 2372–2377 (2015)CrossRef
19.
go back to reference Y. Tian, D. Chassaing, A.G. Nasibulin, et al., The local study of a nanoBud structure. Phys. Stat. Sol. B 245(10), 2047–2050 (2008)CrossRef Y. Tian, D. Chassaing, A.G. Nasibulin, et al., The local study of a nanoBud structure. Phys. Stat. Sol. B 245(10), 2047–2050 (2008)CrossRef
20.
go back to reference S.R. Stoyanov, A.V. Titov, P. Král, Transition metal and nitrogen doped carbon nanostructures. Coord. Chem. Rev. 253, 2852–2871 (2009)CrossRef S.R. Stoyanov, A.V. Titov, P. Král, Transition metal and nitrogen doped carbon nanostructures. Coord. Chem. Rev. 253, 2852–2871 (2009)CrossRef
21.
go back to reference Q.-L. Zhu, Q. Xu, Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem 1, 220–245 (2016)CrossRef Q.-L. Zhu, Q. Xu, Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem 1, 220–245 (2016)CrossRef
22.
go back to reference A. Oganov, R.J. Hemley, R.M. Hazen, A.P. Jones, Structure, bonding, and mineralogy of carbon at extreme conditions. Rev. Mineral. Geochem. 75, 47–77 (2013)CrossRef A. Oganov, R.J. Hemley, R.M. Hazen, A.P. Jones, Structure, bonding, and mineralogy of carbon at extreme conditions. Rev. Mineral. Geochem. 75, 47–77 (2013)CrossRef
23.
go back to reference A.N. Khlobystov, A. Hirsch, Organometallic and coordination chemistry of carbon nanomaterials. Dalton Trans. 43, 7345 (2014)CrossRef A.N. Khlobystov, A. Hirsch, Organometallic and coordination chemistry of carbon nanomaterials. Dalton Trans. 43, 7345 (2014)CrossRef
24.
go back to reference X.-W. Liu, T.-J. Sun, J.-L. Hu, S.-D. Wang, Composites of metal–organic frameworks andcarbon-based materials: preparations, functionalities and applications. J. Mater. Chem. A 4, 3584–3616 (2016)CrossRef X.-W. Liu, T.-J. Sun, J.-L. Hu, S.-D. Wang, Composites of metal–organic frameworks andcarbon-based materials: preparations, functionalities and applications. J. Mater. Chem. A 4, 3584–3616 (2016)CrossRef
Metadata
Title
General Data on Carbon Allotropes
Authors
Boris Ildusovich Kharisov
Oxana Vasilievna Kharissova
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-03505-1_1

Premium Partners