Skip to main content
Top

2021 | OriginalPaper | Chapter

2. General Principles and Practices

Authors : Jialin Zhou, Erwin Oh

Published in: Full-Scale Field Tests of Different Types of Piles

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

All types of engineers are required to have sophisticated understanding and knowledge of subsurface conditions to undertake their projects. Soil analysis is more complicated than analysis of other materials because of soil’s non-continuum characteristic.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abu-Farsakh, M. Y., Haque, M. N., & Tsai, C. (2017). A full-scale field study for performance evaluation of axially loaded large-diameter cylinder piles with pipe piles and PSC piles. Acta Geotechnica, 12(4), 753–772.CrossRef Abu-Farsakh, M. Y., Haque, M. N., & Tsai, C. (2017). A full-scale field study for performance evaluation of axially loaded large-diameter cylinder piles with pipe piles and PSC piles. Acta Geotechnica, 12(4), 753–772.CrossRef
go back to reference Alansari, O. M. A. (1999). Capacity and behavior of steel pipe piles in dry sand (Doctoral dissertation). Alansari, O. M. A. (1999). Capacity and behavior of steel pipe piles in dry sand (Doctoral dissertation).
go back to reference Alleyne, D., & Cawley, P. (1995). The long range detection of corrosion in pipes using Lamb waves. IEE Colloquium (Digest), 240, 6. Alleyne, D., & Cawley, P. (1995). The long range detection of corrosion in pipes using Lamb waves. IEE Colloquium (Digest), 240, 6.
go back to reference American Concrete Institute. (2006). Guide for the design and construction of structural concrete reinforced with FRP bars (ACI 440.1R-06s). American Concrete Institute. (2006). Guide for the design and construction of structural concrete reinforced with FRP bars (ACI 440.1R-06s).
go back to reference Ashford, S. A., & Jakrapiyanun, W. (2001). Drivability of glass FRP composite piling. Journal of Composites for Construction, 5(1), 58–60.CrossRef Ashford, S. A., & Jakrapiyanun, W. (2001). Drivability of glass FRP composite piling. Journal of Composites for Construction, 5(1), 58–60.CrossRef
go back to reference ASTM International. (1994). Standard test methods for deep foundation under static load compressive load (ASTM-D-1143/D-07) (pp. 1–15). ASTM International. (1994). Standard test methods for deep foundation under static load compressive load (ASTM-D-1143/D-07) (pp. 1–15).
go back to reference ASTM International. (1995a). Standard test methods for deep foundations under static axial tensile load (ASTM-D-3689/D-07) (pp. 1–13). ASTM International. (1995a). Standard test methods for deep foundations under static axial tensile load (ASTM-D-3689/D-07) (pp. 1–13).
go back to reference ASTM International. (1995b). Standard test methods for deep foundations under lateral load (ASTM-D-3966/D-07) (pp. 1–18). ASTM International. (1995b). Standard test methods for deep foundations under lateral load (ASTM-D-3966/D-07) (pp. 1–18).
go back to reference ASTM International. (2007a). Standard test methods for direct shear test of soils under consolidated drained conditions (ASTM-D-3080–98) (pp. 1–6). ASTM International. (2007a). Standard test methods for direct shear test of soils under consolidated drained conditions (ASTM-D-3080–98) (pp. 1–6).
go back to reference ASTM International. (2007b). Standard test methods for one-dimensional consolidation properties of soils (ASTM-D-2435–06) (pp. 1–10). ASTM International. (2007b). Standard test methods for one-dimensional consolidation properties of soils (ASTM-D-2435–06) (pp. 1–10).
go back to reference Balasubramaniam, A., Oh, E., & Phienwej, N. (2009). Bored and driven pile testing in Bangkok sub-soils. Journal of Lowland Technology International, 11(1), 29–36. Balasubramaniam, A., Oh, E., & Phienwej, N. (2009). Bored and driven pile testing in Bangkok sub-soils. Journal of Lowland Technology International, 11(1), 29–36.
go back to reference Bergado, D., Ruenkrairergsa, T., Taesiri, Y., & Balasubramaniam, A. (1999). Deep soil mixing used to reduce embankment settlement. Ground Improvement, 3, 145–162.CrossRef Bergado, D., Ruenkrairergsa, T., Taesiri, Y., & Balasubramaniam, A. (1999). Deep soil mixing used to reduce embankment settlement. Ground Improvement, 3, 145–162.CrossRef
go back to reference Boathong, P., Jamsawang, P., & Mairaing, W. (2014). Lateral movement of slope stabilized with DCM column rows. Electron Journal Geotechnical Engineering, 19(H), 1647–1664. Boathong, P., Jamsawang, P., & Mairaing, W. (2014). Lateral movement of slope stabilized with DCM column rows. Electron Journal Geotechnical Engineering, 19(H), 1647–1664.
go back to reference Buathong, P., & Mairaing, W. (2010). Failure behavior of large drainage canal reinforced by DCM piles. In Proceedings of the EIT-JSCE Joint International Symposium. Bangkok, Thailand. Buathong, P., & Mairaing, W. (2010). Failure behavior of large drainage canal reinforced by DCM piles. In Proceedings of the EIT-JSCE Joint International Symposium. Bangkok, Thailand.
go back to reference Bowles, J. E. (1977). Foundation analysis and design (3rd ed.). New York, NY: McGraw-Hill Book Company. Bowles, J. E. (1977). Foundation analysis and design (3rd ed.). New York, NY: McGraw-Hill Book Company.
go back to reference Brinch-Hansen, J. (1963). Hyperbolic stress-strain response: Cohesive soils discussion. American Society of Civil Engineers Journal of Soil Mechanics and Foundation Division, 89(SM4), 241–242.CrossRef Brinch-Hansen, J. (1963). Hyperbolic stress-strain response: Cohesive soils discussion. American Society of Civil Engineers Journal of Soil Mechanics and Foundation Division, 89(SM4), 241–242.CrossRef
go back to reference Brown, D. A., O’Neill, M., Hoit, M., McVay, M., El Naggar, M., & Chakraborty, S. (2001). Static and dynamic lateral loading of pile groups. In National Cooperative Highway Research Program Report (pp. 1–57). Brown, D. A., O’Neill, M., Hoit, M., McVay, M., El Naggar, M., & Chakraborty, S. (2001). Static and dynamic lateral loading of pile groups. In National Cooperative Highway Research Program Report (pp. 1–57).
go back to reference Bustamante, M., & Gianeselli, L. (1982). Pile bearing capacity prediction by means of static penetrometer CPT. Paper presented at the Proceedings of the 2nd European Symposium on Penetration Testing. Bustamante, M., & Gianeselli, L. (1982). Pile bearing capacity prediction by means of static penetrometer CPT. Paper presented at the Proceedings of the 2nd European Symposium on Penetration Testing.
go back to reference Butler, H. D., & Hoy, H. E. (1976). The Texas quick-load method for foundation load testing, user’s manual, NASA STI/Recon Technical Report N. (p. 77). Butler, H. D., & Hoy, H. E. (1976). The Texas quick-load method for foundation load testing, user’s manual, NASA STI/Recon Technical Report N. (p. 77).
go back to reference Casagrande, A. (1936). The determination of the pre-consolidation load and its practical. Paper presented at the 1st International Soil Mechanics and Foundation Engineering Conference, Cambridge, MA. Casagrande, A. (1936). The determination of the pre-consolidation load and its practical. Paper presented at the 1st International Soil Mechanics and Foundation Engineering Conference, Cambridge, MA.
go back to reference Chen, J.-J., Wang, J.-H., Ke, X., & Jeng, D.-S. (2011). Behavior of large-diameter rock-socketed piles under lateral loads. International Journal of Offshore and Polar Engineering, 21(04). Chen, J.-J., Wang, J.-H., Ke, X., & Jeng, D.-S. (2011). Behavior of large-diameter rock-socketed piles under lateral loads. International Journal of Offshore and Polar Engineering, 21(04).
go back to reference Cheney, R. S., & Chassie, R. G. (2000). Soils and foundations workshop manual. Washington, DC: Federal Highway Administration, National Highway Institute. Cheney, R. S., & Chassie, R. G. (2000). Soils and foundations workshop manual. Washington, DC: Federal Highway Administration, National Highway Institute.
go back to reference Cheng, A., & Cheng, A. (1999). Characterization of layered cylindrical structures using cylindrical waves. In Review of progress in quantitative nondestructive evaluation (pp. 223–230). Springer. Cheng, A., & Cheng, A. (1999). Characterization of layered cylindrical structures using cylindrical waves. In Review of progress in quantitative nondestructive evaluation (pp. 223–230). Springer.
go back to reference Chim-oye, W., & Marumdee, N. (2013). Estimation of uplift pile capacity in the sand layers. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 4(1), 57–65. Chim-oye, W., & Marumdee, N. (2013). Estimation of uplift pile capacity in the sand layers. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 4(1), 57–65.
go back to reference Chin, F. K. (1970). Estimation of the ultimate load of piles not carried to failure. In Proceedings of the 2nd Southeast Asian Conference on Soil Engineering (pp. 81–91). Chin, F. K. (1970). Estimation of the ultimate load of piles not carried to failure. In Proceedings of the 2nd Southeast Asian Conference on Soil Engineering (pp. 81–91).
go back to reference Coulomb, C. A. (1776). Essai sur une application des regles des maximis et minimis a quelquels problemesde statique relatifs, a la architecture. Mem. Acad. Roy. Div., 7, 343–387. Coulomb, C. A. (1776). Essai sur une application des regles des maximis et minimis a quelquels problemesde statique relatifs, a la architecture. Mem. Acad. Roy. Div., 7, 343–387.
go back to reference Craig, R. F. (1983). Soil mechanics (3rd ed.). Department of Civil Engineering, University of Dundee: Springer Science & Business Media LLC.CrossRef Craig, R. F. (1983). Soil mechanics (3rd ed.). Department of Civil Engineering, University of Dundee: Springer Science & Business Media LLC.CrossRef
go back to reference Dapp, S., Muchard, M., & Brown, D. (2006). Experiences with base grouted drilled shafts in the southeastern United States. In Proceedings of the 10th International Conference on Piling and Deep Foundations (pp. 1553–1562). Amsterdam, the Netherlands: Deep Foundations Institute. Dapp, S., Muchard, M., & Brown, D. (2006). Experiences with base grouted drilled shafts in the southeastern United States. In Proceedings of the 10th International Conference on Piling and Deep Foundations (pp. 1553–1562). Amsterdam, the Netherlands: Deep Foundations Institute.
go back to reference Davisson, M. T. (1972). High capacity piles. Proceedings of the Soil Mechanics Lecture Series on Innovations in Foundation Construction, American Society of Civil Engineers, IIIinois Section, Chicago, 81–112. Davisson, M. T. (1972). High capacity piles. Proceedings of the Soil Mechanics Lecture Series on Innovations in Foundation Construction, American Society of Civil Engineers, IIIinois Section, Chicago, 81–112.
go back to reference De Kuiter, J., & Beringen, F. (1979). Pile foundations for large North Sea structures. Marine Georesources & Geotechnology, 3(3), 267–314.CrossRef De Kuiter, J., & Beringen, F. (1979). Pile foundations for large North Sea structures. Marine Georesources & Geotechnology, 3(3), 267–314.CrossRef
go back to reference DeBeer, E. E. (1970). Experimental determination of the shape factors and the bearing capacity factors of sand. Geotechnique, 20(4), 387–411.CrossRef DeBeer, E. E. (1970). Experimental determination of the shape factors and the bearing capacity factors of sand. Geotechnique, 20(4), 387–411.CrossRef
go back to reference Dong, P., Qin, R., & Chen, Z. (2004). Bearing capacity and settlement of concrete-cored DCM pile in soft ground. Geotechnical and Geological Engineering, 22(1), 105–119.CrossRef Dong, P., Qin, R., & Chen, Z. (2004). Bearing capacity and settlement of concrete-cored DCM pile in soft ground. Geotechnical and Geological Engineering, 22(1), 105–119.CrossRef
go back to reference Fam, A. Z. (2000). Concrete-filled fibre-reinforced polymer tubes for axial and flexural structural members (Doctoral thesis). Fam, A. Z. (2000). Concrete-filled fibre-reinforced polymer tubes for axial and flexural structural members (Doctoral thesis).
go back to reference Fellenius, B. H. and Samson, L. (1976). Testing of drivability of concrete piles and disturbance to sensitive clay. Canadian Geotechnical Journal, 13(2), (pp. 139–160). Fellenius, B. H. and Samson, L. (1976). Testing of drivability of concrete piles and disturbance to sensitive clay. Canadian Geotechnical Journal, 13(2), (pp. 139–160).
go back to reference Fellenius, B. H. (1991). Pile foundations. In H. S. Fang (Ed.), Foundation engineering handbook (pp. 511–536). New York, NY: Van Nostrand Reinhold Publisher.CrossRef Fellenius, B. H. (1991). Pile foundations. In H. S. Fang (Ed.), Foundation engineering handbook (pp. 511–536). New York, NY: Van Nostrand Reinhold Publisher.CrossRef
go back to reference Fellenius, B. H. (2002). Determining the True Distributions of Load in Instrumented Piles (p. 116). Paper presented at the ASCE International Deep Foundation Congress: Geotechnical Special Publications. Fellenius, B. H. (2002). Determining the True Distributions of Load in Instrumented Piles (p. 116). Paper presented at the ASCE International Deep Foundation Congress: Geotechnical Special Publications.
go back to reference Fuller, F. M. (1983). Engineering of pile installations. McGraw-Hill Companies. Fuller, F. M. (1983). Engineering of pile installations. McGraw-Hill Companies.
go back to reference Goble, G., & Rausche, F. (1970). Pile load test by impact driving. Washington, DC: Paper presented at the Highway Research Board Annual Meeting. Goble, G., & Rausche, F. (1970). Pile load test by impact driving. Washington, DC: Paper presented at the Highway Research Board Annual Meeting.
go back to reference Goble, G. G., Likins Jr, G., & Rausche, F. (1975). Bearing capacity of piles from dynamic measurements (No. OHIO-DOT-05–75 Final Rpt.). United States Department of Transportation. Goble, G. G., Likins Jr, G., & Rausche, F. (1975). Bearing capacity of piles from dynamic measurements (No. OHIO-DOT-05–75 Final Rpt.). United States Department of Transportation.
go back to reference Gregersen, O. S., Aas, G., & Dibiagio, E. (1975). Load tests on friction piles in loose sand. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 12(7), 98–98.CrossRef Gregersen, O. S., Aas, G., & Dibiagio, E. (1975). Load tests on friction piles in loose sand. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 12(7), 98–98.CrossRef
go back to reference Ground Engineering. (2003). Getting to grips with friction. Ground Engineering, Magazine of the British Geotechnical Association, 26, 20–21. Ground Engineering. (2003). Getting to grips with friction. Ground Engineering, Magazine of the British Geotechnical Association, 26, 20–21.
go back to reference Guades, E., Aravinthan, T., Islam, M., & Manalo, A. (2012). A review on the driving performance of FRP composite piles. Composite Structures, 94(6), 1932–1942.CrossRef Guades, E., Aravinthan, T., Islam, M., & Manalo, A. (2012). A review on the driving performance of FRP composite piles. Composite Structures, 94(6), 1932–1942.CrossRef
go back to reference Hannigan, P. J. (1990). Dynamic monitoring and analysis of pile foundation installations—Continuing education short course text. Deep Foundations Institute. Hannigan, P. J. (1990). Dynamic monitoring and analysis of pile foundation installations—Continuing education short course text. Deep Foundations Institute.
go back to reference Hannigan, P. J., Goble, G. G., Likins, G. E., & Rausche, F. (2006). Design and construction of driven pile foundations (FHWA-NHI-05-043) (FHWA-NHI-05-043). Federal Highway Administration: United States. Hannigan, P. J., Goble, G. G., Likins, G. E., & Rausche, F. (2006). Design and construction of driven pile foundations (FHWA-NHI-05-043) (FHWA-NHI-05-043). Federal Highway Administration: United States.
go back to reference Hannigan, P. J., Goble, G. G., Likins, G. E., & Becker, M. L. (2016). Design and construction of driven pile foundations (FHWA-NHI-16-009) (FHWA-NHI-16-009). Federal Highway Administration: United States. Hannigan, P. J., Goble, G. G., Likins, G. E., & Becker, M. L. (2016). Design and construction of driven pile foundations (FHWA-NHI-16-009) (FHWA-NHI-16-009). Federal Highway Administration: United States.
go back to reference Hassan, M., & Iskander, M. G. (1998). State of the Practice Review in FRP Composite Piling. Journal of Composites for Construction, 2(3), 116–120.CrossRef Hassan, M., & Iskander, M. G. (1998). State of the Practice Review in FRP Composite Piling. Journal of Composites for Construction, 2(3), 116–120.CrossRef
go back to reference Helwany, S., & Wiley, B. (2007). Applied soil mechanics: With ABAQUS applications. Hoboken, NJ: John Wiley & Sons.CrossRef Helwany, S., & Wiley, B. (2007). Applied soil mechanics: With ABAQUS applications. Hoboken, NJ: John Wiley & Sons.CrossRef
go back to reference Ho, C. E. (2003). Base grouted bored pile on weak granite. In Proceedings of the Third International Conference on Grouting and Ground Treatment (pp. 716–727). Ho, C. E. (2003). Base grouted bored pile on weak granite. In Proceedings of the Third International Conference on Grouting and Ground Treatment (pp. 716–727).
go back to reference Hsu, S.-T. (2014). Behaviors of large-scale driven PC piles. Journal of Marine Science and Technology, 22(4), 487–497. Hsu, S.-T. (2014). Behaviors of large-scale driven PC piles. Journal of Marine Science and Technology, 22(4), 487–497.
go back to reference Huo, S., Chao, Y., Dai, G., & Gong, W. (2015). Field test research of inclined large-scale steel pipe pile foundation for offshore wind farms. Journal of Coastal Research, SI(73), 132–138. Huo, S., Chao, Y., Dai, G., & Gong, W. (2015). Field test research of inclined large-scale steel pipe pile foundation for offshore wind farms. Journal of Coastal Research, SI(73), 132–138.
go back to reference Hussein, M. H., Woerner, I., Wayne, A., Sharp, M., & Hwang, C. (2006). Pile driveability and bearing capacity in high-rebound soils. In GeoCongress 2006: Geotechnical Engineering in the Information Technology Age (pp. 1–4). Hussein, M. H., Woerner, I., Wayne, A., Sharp, M., & Hwang, C. (2006). Pile driveability and bearing capacity in high-rebound soils. In GeoCongress 2006: Geotechnical Engineering in the Information Technology Age (pp. 1–4).
go back to reference Jamiolkowski, M., Lo Presti, D., & Manassero, M. (2003). Evaluation of relative density and shear strength of sands from CPT and DMT. Soil behavior and soft ground construction (pp. 201–238). Jamiolkowski, M., Lo Presti, D., & Manassero, M. (2003). Evaluation of relative density and shear strength of sands from CPT and DMT. Soil behavior and soft ground construction (pp. 201–238).
go back to reference Jamsawang, P., Bergado, D. T., & Voottipruex, P. (2011). Field behaviour of stiffened deep cement mixing piles. Proceedings of the Institution of Civil Engineers—Ground Improvement, 164(1), 33–49. Jamsawang, P., Bergado, D. T., & Voottipruex, P. (2011). Field behaviour of stiffened deep cement mixing piles. Proceedings of the Institution of Civil Engineers—Ground Improvement, 164(1), 33–49.
go back to reference Jiao, Q. Z. (2007). Shaft wall design for a shield to directly cut through. Modern Tunneling Technology, 44(4), 20–23. Jiao, Q. Z. (2007). Shaft wall design for a shield to directly cut through. Modern Tunneling Technology, 44(4), 20–23.
go back to reference Jongpradist, P., Youwai, S., & Jaturapitakkul, C. (2010). Effective void ratio for assessing the mechanical properties of cement-clay admixtures at high water content. Journal of Geotechnical and Geoenvironmental Engineering, 137(6), 621–627.CrossRef Jongpradist, P., Youwai, S., & Jaturapitakkul, C. (2010). Effective void ratio for assessing the mechanical properties of cement-clay admixtures at high water content. Journal of Geotechnical and Geoenvironmental Engineering, 137(6), 621–627.CrossRef
go back to reference Juran, I., & Komornik, U. (2006). Behavior of fiber-reinforced polymer composite piles under vertical loads (No. FHWA-HRT-04–107). United States Department of Transportation. Juran, I., & Komornik, U. (2006). Behavior of fiber-reinforced polymer composite piles under vertical loads (No. FHWA-HRT-04–107). United States Department of Transportation.
go back to reference Khaleghi, B., Lehman, D., & Roeder, C. (2016). Concrete Filled Steel Tube Bridge Pier Connections-An ABC Solution. Produced by Accelerated Bridge Construction: Center & Florida International University. Khaleghi, B., Lehman, D., & Roeder, C. (2016). Concrete Filled Steel Tube Bridge Pier Connections-An ABC Solution. Produced by Accelerated Bridge Construction: Center & Florida International University.
go back to reference Kim, S., Whang, S.-W., Kim, S., & Hyung, W. G. (2017). Application of extended end composite pile design in pile foundation work. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 170(5), 455–465.CrossRef Kim, S., Whang, S.-W., Kim, S., & Hyung, W. G. (2017). Application of extended end composite pile design in pile foundation work. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 170(5), 455–465.CrossRef
go back to reference Knappett, J., & Craig, R. F. (2012). Craig’s soil mechanics (8th ed.). Abingdon, Oxon, New York: Spon Press. Knappett, J., & Craig, R. F. (2012). Craig’s soil mechanics (8th ed.). Abingdon, Oxon, New York: Spon Press.
go back to reference Kumar, S., Alarcon, C., & Hosin, A. (2004). O-cell testing of reinforced concrete driven piles. In International Conference on Case Histories in Geotechnical Engineering (pp. 1–7). Kumar, S., Alarcon, C., & Hosin, A. (2004). O-cell testing of reinforced concrete driven piles. In International Conference on Case Histories in Geotechnical Engineering (pp. 1–7).
go back to reference Kundu, T., & Ryu, Y.-S. (2002). Underwater inspection of concrete-filled steel pipes using guided waves. KSCE Journal of Civil Engineering, 6(1), 25–31.CrossRef Kundu, T., & Ryu, Y.-S. (2002). Underwater inspection of concrete-filled steel pipes using guided waves. KSCE Journal of Civil Engineering, 6(1), 25–31.CrossRef
go back to reference Kyfor, Z. G., Schnore, A. R., Carlo, T. A., & Baily, P. F. (1992). Static testing of deep foundations (No. FHWA-NHI-16–009). US Department of Transportation. Kyfor, Z. G., Schnore, A. R., Carlo, T. A., & Baily, P. F. (1992). Static testing of deep foundations (No. FHWA-NHI-16–009). US Department of Transportation.
go back to reference Lai, P., Mullins, G., & Dapp, S. D. (2000). Pressure-grouting drilled shaft tips in sand. Paper presented at the New Technological and Design Developments in Deep Foundations. Lai, P., Mullins, G., & Dapp, S. D. (2000). Pressure-grouting drilled shaft tips in sand. Paper presented at the New Technological and Design Developments in Deep Foundations.
go back to reference Lai, Y., Bergado, D., Lorenzo, G., & Duangchan, T. (2006). Full-scale reinforced embankment on deep jet mixing improved ground. Proceedings of the Institution of Civil Engineers-Ground Improvement, 10(4), 153–164.CrossRef Lai, Y., Bergado, D., Lorenzo, G., & Duangchan, T. (2006). Full-scale reinforced embankment on deep jet mixing improved ground. Proceedings of the Institution of Civil Engineers-Ground Improvement, 10(4), 153–164.CrossRef
go back to reference Lao, W. K., Zhou, L. Y., & Wang, Z. (2004). Field test and theoretical analysis on flexible large-diameter rock-socketed steel pipe piles under lateral load [J]. Chinese Journal of Rock Mechanics and Engineering, 10, 1–35. Lao, W. K., Zhou, L. Y., & Wang, Z. (2004). Field test and theoretical analysis on flexible large-diameter rock-socketed steel pipe piles under lateral load [J]. Chinese Journal of Rock Mechanics and Engineering, 10, 1–35.
go back to reference Lee, J., & Song, K. (2010). Material properties and bearing capacities of extended PHC pile with enlarged pile thickness. Architectural Institute of Korea, 30(1), 207–208. Lee, J., & Song, K. (2010). Material properties and bearing capacities of extended PHC pile with enlarged pile thickness. Architectural Institute of Korea, 30(1), 207–208.
go back to reference Lehane, B. M., Williams, R., & Li, Y. (2013). Shaft capacity of displacement piles in clay using the cone penetration tests. Journal of Geotechincal and Geoenvironmental Engineering, 139(2), 253–266.CrossRef Lehane, B. M., Williams, R., & Li, Y. (2013). Shaft capacity of displacement piles in clay using the cone penetration tests. Journal of Geotechincal and Geoenvironmental Engineering, 139(2), 253–266.CrossRef
go back to reference Li, W. J., Qin, L., Zhong, C., & Wang, L. K. (2015). Study of vibration characteristics about two-layered composite pile. Integrated Ferroelectrics, 167(1), 41–51.CrossRef Li, W. J., Qin, L., Zhong, C., & Wang, L. K. (2015). Study of vibration characteristics about two-layered composite pile. Integrated Ferroelectrics, 167(1), 41–51.CrossRef
go back to reference Li, X., Xie, K., Zeng, G., & Hou, X. (2000). Research of bored pile slurry effect created during construction. Structural Construction, 30(5), 21–23. Li, X., Xie, K., Zeng, G., & Hou, X. (2000). Research of bored pile slurry effect created during construction. Structural Construction, 30(5), 21–23.
go back to reference Liao, S. S., & Whitman, R. V. (1986). Overburden correction factors for SPT in sand. Journal of geotechnical engineering, 112(3), 373–377. Liao, S. S., & Whitman, R. V. (1986). Overburden correction factors for SPT in sand. Journal of geotechnical engineering, 112(3), 373–377.
go back to reference Liew, S., Ng, H., & Lee, K. (2004). Comparison of HSDPT and SLT results of driven piles in Malaysian residual soils. Paper presented at the Malaysian Geotechnical Conference. Liew, S., Ng, H., & Lee, K. (2004). Comparison of HSDPT and SLT results of driven piles in Malaysian residual soils. Paper presented at the Malaysian Geotechnical Conference.
go back to reference Liu, J., Yuan, H. J., Li, J. F., Zhou, H., & Sun, H. Y. (2014). Current state of research and application of GFRP in shield engineering. Urban Rapid Rail Transit, 27(1), 81–86. Liu, J., Yuan, H. J., Li, J. F., Zhou, H., & Sun, H. Y. (2014). Current state of research and application of GFRP in shield engineering. Urban Rapid Rail Transit, 27(1), 81–86.
go back to reference Liu, S.-Y., Du, Y.-J., Yi, Y.-L., & Puppala, A. J. (2011). Field investigations on performance of T-shaped deep mixed soil cement column–supported embankments over soft ground. Journal of Geotechnical and Geoenvironmental Engineering, 138(6), 718–727.CrossRef Liu, S.-Y., Du, Y.-J., Yi, Y.-L., & Puppala, A. J. (2011). Field investigations on performance of T-shaped deep mixed soil cement column–supported embankments over soft ground. Journal of Geotechnical and Geoenvironmental Engineering, 138(6), 718–727.CrossRef
go back to reference Liu, X. J. (2014). Comparative study on expansive soil steep slope FRP materials bolt support. Applied Mechanics and Materials, 454, 250–254.CrossRef Liu, X. J. (2014). Comparative study on expansive soil steep slope FRP materials bolt support. Applied Mechanics and Materials, 454, 250–254.CrossRef
go back to reference Lunne, T., Robertson, P., & Powell, J. (1997). Cone penetration testing. Geotechnical Practice. Lunne, T., Robertson, P., & Powell, J. (1997). Cone penetration testing. Geotechnical Practice.
go back to reference Luo, L. (2014). Development and application of FRP materials in the structural in China. In Recent advances in material, analysis, monitoring, and evaluation in foundation and bridge engineering (pp. 126–132). Luo, L. (2014). Development and application of FRP materials in the structural in China. In Recent advances in material, analysis, monitoring, and evaluation in foundation and bridge engineering (pp. 126–132).
go back to reference Madhyannapu, R. S., & Puppala, A. J. (2015). Design and construction guidelines for deep soil mixing to stabilize expansive soils. Journal of Geotechnical and Geoenvironmental Engineering, 141(9). Madhyannapu, R. S., & Puppala, A. J. (2015). Design and construction guidelines for deep soil mixing to stabilize expansive soils. Journal of Geotechnical and Geoenvironmental Engineering, 141(9).
go back to reference Malik, A. A., Kuwnao, J., Tachibana, S., & Maejima, T. (2016). Interpretation of screw pile load test data using extrapolation method in dense sand. International Journal of GEOMATE, 10(1), 1567–1574. Malik, A. A., Kuwnao, J., Tachibana, S., & Maejima, T. (2016). Interpretation of screw pile load test data using extrapolation method in dense sand. International Journal of GEOMATE, 10(1), 1567–1574.
go back to reference Manh, T., Jensen, G. U., Johansen, T. F., & Hoff, L. (2013). Microfabricated 1–3 composite acoustic matching layers for 15MHz transducers. Ultrasonics, 53(6), 1141–1149.CrossRef Manh, T., Jensen, G. U., Johansen, T. F., & Hoff, L. (2013). Microfabricated 1–3 composite acoustic matching layers for 15MHz transducers. Ultrasonics, 53(6), 1141–1149.CrossRef
go back to reference Mansur, C. I., & Hunter, A. H. (1970). Pile tests-Arkansas river project. Journal of Soil Mechanics & Foundations Division. Mansur, C. I., & Hunter, A. H. (1970). Pile tests-Arkansas river project. Journal of Soil Mechanics & Foundations Division.
go back to reference Marcos, M. C. M., Chen, Y.-J., & Kulhawy, F. H. (2013). Evaluation of compression load test interpretation criteria for driven precast concrete pile capacity. KSCE Journal of Civil Engineering, 17(5), 1008–1022.CrossRef Marcos, M. C. M., Chen, Y.-J., & Kulhawy, F. H. (2013). Evaluation of compression load test interpretation criteria for driven precast concrete pile capacity. KSCE Journal of Civil Engineering, 17(5), 1008–1022.CrossRef
go back to reference Mayne, P. W., Christopher, B., Berg, R., & DeJong, J. (2002). Subsurface Investigations (Geotechnical Site Characterization), (FHWA NHI-01-031) (Geotechnical Site Characterization), (FHWA NHI-01-031). National Highway Institute, Federal Highway Administration, Washington, D.C.: U.S. Dept. of Transportation. Mayne, P. W., Christopher, B., Berg, R., & DeJong, J. (2002). Subsurface Investigations (Geotechnical Site Characterization), (FHWA NHI-01-031) (Geotechnical Site Characterization), (FHWA NHI-01-031). National Highway Institute, Federal Highway Administration, Washington, D.C.: U.S. Dept. of Transportation.
go back to reference Mayne, P. (2007). Cone penetration testing—A synthesis of highway practice. Washington DC: Transportation Research Board, National Academies Press. Mayne, P. (2007). Cone penetration testing—A synthesis of highway practice. Washington DC: Transportation Research Board, National Academies Press.
go back to reference McNamara, A., & Gorasia, R. J. (2016). High-capacity ribbed pile foundations. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 169(3), 264–275. McNamara, A., & Gorasia, R. J. (2016). High-capacity ribbed pile foundations. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 169(3), 264–275.
go back to reference Meyerhof, G. G. (1956). Penetration tests and bearing capacity of cohesionless soils. Journal of the Soil Mechanics and Foundations Division, 82(1), 1–19.CrossRef Meyerhof, G. G. (1956). Penetration tests and bearing capacity of cohesionless soils. Journal of the Soil Mechanics and Foundations Division, 82(1), 1–19.CrossRef
go back to reference Meyerhof, G. G. (1976). Bearing capacity and settlement of pile foundations International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13(6), A67–A67. Meyerhof, G. G. (1976). Bearing capacity and settlement of pile foundations International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13(6), A67–A67.
go back to reference Ming, Z. (2011). The design and application of GFRP concrete structure in Dongwan subway tunnel project. China Academic Journal Electronic Publishing House, 6, 40–42. Ming, Z. (2011). The design and application of GFRP concrete structure in Dongwan subway tunnel project. China Academic Journal Electronic Publishing House, 6, 40–42.
go back to reference Ministry of Construction of the People’s Republic of China. (2002). Code for design of concrete structures (GB 50010–2002). Beijing, China: National Standard of the People’s Republic of China. Ministry of Construction of the People’s Republic of China. (2002). Code for design of concrete structures (GB 50010–2002). Beijing, China: National Standard of the People’s Republic of China.
go back to reference Mirmiran, A., & Shahawy, M. (1996). A new concrete-filled hollow FRP composite column. Composites Part B-Engineering, 27(3–4), 263–268.CrossRef Mirmiran, A., & Shahawy, M. (1996). A new concrete-filled hollow FRP composite column. Composites Part B-Engineering, 27(3–4), 263–268.CrossRef
go back to reference Miura, N., Horpibulsuk, S., & Nagaraj, T. (2001). Engineering behavior of cement stabilized clay at high water content. Soils and Foundations, 41(5), 33–45.CrossRef Miura, N., Horpibulsuk, S., & Nagaraj, T. (2001). Engineering behavior of cement stabilized clay at high water content. Soils and Foundations, 41(5), 33–45.CrossRef
go back to reference Mokhlesur, M., Rahman, P., & Rabbi, M. Z. (2011). Strength and deformation characteristics of cement treated soft Bangladesh clays. IEM Journal, 72(4), 21–31. Mokhlesur, M., Rahman, P., & Rabbi, M. Z. (2011). Strength and deformation characteristics of cement treated soft Bangladesh clays. IEM Journal, 72(4), 21–31.
go back to reference Naesgaard, E. (1992). Lateral load tests to examine large-strain (seismic) behaviour of piles. Canadian Geotechnical Journal, 29(2), 245–252.CrossRef Naesgaard, E. (1992). Lateral load tests to examine large-strain (seismic) behaviour of piles. Canadian Geotechnical Journal, 29(2), 245–252.CrossRef
go back to reference Nakamura, S. (1998). Design strategy to make steel bridges more economical. Journal of Constructional Steel Research, 1(46), 58.CrossRef Nakamura, S. (1998). Design strategy to make steel bridges more economical. Journal of Constructional Steel Research, 1(46), 58.CrossRef
go back to reference Nguyen, V. L., Nie, L., & Zhang, M. (2012). Method Cement Post-grouting to Increase the Load Capacity for Bored Pile. Research Journal of Applied Sciences, Engineering and Technology, 5(19), 4727–4732.CrossRef Nguyen, V. L., Nie, L., & Zhang, M. (2012). Method Cement Post-grouting to Increase the Load Capacity for Bored Pile. Research Journal of Applied Sciences, Engineering and Technology, 5(19), 4727–4732.CrossRef
go back to reference Nordlund, R. L. (1963). Bearing capacity of piles in cohesionless soils. American Society of Civil Engineers Journal of the Soil Mechanics and Foundations Division, SM3, 1–35. Nordlund, R. L. (1963). Bearing capacity of piles in cohesionless soils. American Society of Civil Engineers Journal of the Soil Mechanics and Foundations Division, SM3, 1–35.
go back to reference Nordlund, R.L. (1979). Point Bearing and Shaft Friction of Piles in Sand. Missouri-Rolla 5th Annual Short Course on the Fundamentals of Deep Foundation Design. Nordlund, R.L. (1979). Point Bearing and Shaft Friction of Piles in Sand. Missouri-Rolla 5th Annual Short Course on the Fundamentals of Deep Foundation Design.
go back to reference Paikowsky, S. G., & Tolosko, T. A. (1999). Extrapolation of pile capacity from non-failed load tests (No. FHWA-RD-99–170). US Department of Transportation. Paikowsky, S. G., & Tolosko, T. A. (1999). Extrapolation of pile capacity from non-failed load tests (No. FHWA-RD-99–170). US Department of Transportation.
go back to reference Pando, M. A. (2003). A laboratory and field study of composite piles for bridge substructures (Doctoral dissertation). Pando, M. A. (2003). A laboratory and field study of composite piles for bridge substructures (Doctoral dissertation).
go back to reference Pando, M. A., Ealy, C. D., Filz, G. M., Lesko, J. J., & Hoppe, E. J. (2006). A laboratory and field study of composite piles for bridge substructures (No. FHWA-HRT-04–043). US Department of Transportation. Pando, M. A., Ealy, C. D., Filz, G. M., Lesko, J. J., & Hoppe, E. J. (2006). A laboratory and field study of composite piles for bridge substructures (No. FHWA-HRT-04–043). US Department of Transportation.
go back to reference Pando, M. A., Hoppe, E. J., Filz, G. M., & Dove, J. E. (2002). Interface shear tests on FRP composite piles. In Deep Foundations 2002: An International Perspective on Theory, Design, Construction, and Performance (pp. 1486–1500). Pando, M. A., Hoppe, E. J., Filz, G. M., & Dove, J. E. (2002). Interface shear tests on FRP composite piles. In Deep Foundations 2002: An International Perspective on Theory, Design, Construction, and Performance (pp. 1486–1500).
go back to reference Park, J.-S., Lee, S.-H., Park, S.-S., Cho, J.-W., Jung, S.-W., Han, J.-H., & Kang, S.-G. (2003). Acoustic and electromechanical properties of 1–3 PZT composites for ultrasonic transducer arrays fabricated by sacrificial micro PMMA mold. Sensors and Actuators a: Physical, 108(1), 206–211.CrossRef Park, J.-S., Lee, S.-H., Park, S.-S., Cho, J.-W., Jung, S.-W., Han, J.-H., & Kang, S.-G. (2003). Acoustic and electromechanical properties of 1–3 PZT composites for ultrasonic transducer arrays fabricated by sacrificial micro PMMA mold. Sensors and Actuators a: Physical, 108(1), 206–211.CrossRef
go back to reference Patel, D., Glover, S., Chew, J., & Austin, J. (2015). The Pinnacle-design and construction of large diameter deep base grouted piles in London. Ground Engineering, 24–31. Patel, D., Glover, S., Chew, J., & Austin, J. (2015). The Pinnacle-design and construction of large diameter deep base grouted piles in London. Ground Engineering, 24–31.
go back to reference Peck, R. B., Hanson, W. E., & Thornburn, T. H. (1974). Foundation engineering (Vol. 10). New York, NY: Wiley. Peck, R. B., Hanson, W. E., & Thornburn, T. H. (1974). Foundation engineering (Vol. 10). New York, NY: Wiley.
go back to reference Perko, H. A. (2009). Helical piles: A practical guide to design and installation. John Wiley & Sons. Perko, H. A. (2009). Helical piles: A practical guide to design and installation. John Wiley & Sons.
go back to reference Peterson, T. (1999). Structural properties of steel-encased concrete piles (master’s dissertation). Peterson, T. (1999). Structural properties of steel-encased concrete piles (master’s dissertation).
go back to reference Rausche, F., Moses, F., & Goble, G. G. (2004). Soil resistance predictions from pile dynamics Current Practices and Future Trends in Deep Foundations (pp. 418–440). Rausche, F., Moses, F., & Goble, G. G. (2004). Soil resistance predictions from pile dynamics Current Practices and Future Trends in Deep Foundations (pp. 418–440).
go back to reference Reese, L. C. (1984). Handbook on design of piles and drilled shafts under lateral load (No. FHWA-NHI-16–009). US Department of Transportation. Reese, L. C. (1984). Handbook on design of piles and drilled shafts under lateral load (No. FHWA-NHI-16–009). US Department of Transportation.
go back to reference Robertson, P. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1), 151–158.CrossRef Robertson, P. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1), 151–158.CrossRef
go back to reference Robinson, B., & Iskander, M. (2008). Static and dynamic load tests on driven polymeric piles. In GeoCongress 2008: Geosustainability and Geohazard Mitigation (pp. 939–946). Robinson, B., & Iskander, M. (2008). Static and dynamic load tests on driven polymeric piles. In GeoCongress 2008: Geosustainability and Geohazard Mitigation (pp. 939–946).
go back to reference Rose, J. L., Cho, Y., & Ditri, J. J. (1994). Cylindrical guided wave leakage due to liquid loading. Review of Progress in Quantitative Nondestructive Evaluation, 13, 259–259. Rose, J. L., Cho, Y., & Ditri, J. J. (1994). Cylindrical guided wave leakage due to liquid loading. Review of Progress in Quantitative Nondestructive Evaluation, 13, 259–259.
go back to reference Samtani, N. C., & Nowatzki, E. A. (2006a). Soils and foundations—Volume I (No. FHWA-NHI-16–009). US Department of Transportation. Samtani, N. C., & Nowatzki, E. A. (2006a). Soils and foundations—Volume I (No. FHWA-NHI-16–009). US Department of Transportation.
go back to reference Samtani, N. C., & Nowatzki, E. A. (2006b). Soils and foundations—Volume II (No. FHWA-NHI-16–009). US Department of Transportation. Samtani, N. C., & Nowatzki, E. A. (2006b). Soils and foundations—Volume II (No. FHWA-NHI-16–009). US Department of Transportation.
go back to reference Schmertmann, J. H. (1978). Guidelines for cone penetration test (performance and design) (Final Report No. FHWA-TS-78–209). US Department of Transportation. Schmertmann, J. H. (1978). Guidelines for cone penetration test (performance and design) (Final Report No. FHWA-TS-78–209). US Department of Transportation.
go back to reference Shi, C. (2005). The application of the pile-end mud-jacking technique in the construction of bored caisson pile. Sci/Tech Information Development & Economy, 15(23), 293–296. Shi, C. (2005). The application of the pile-end mud-jacking technique in the construction of bored caisson pile. Sci/Tech Information Development & Economy, 15(23), 293–296.
go back to reference Shin, Y., Kim, M., Ko, J., & Jeong, S. (2014). Proposed design chart of mechanical joints on steel-PHC composite piles. Materials and Structures, 47(7), 1221–1238.CrossRef Shin, Y., Kim, M., Ko, J., & Jeong, S. (2014). Proposed design chart of mechanical joints on steel-PHC composite piles. Materials and Structures, 47(7), 1221–1238.CrossRef
go back to reference Sinnreich, J., & Simpson, R. C. (2013). Base Grouting Case Studies Including Full Scale Comparative Load Testing. Seventh International Conference on Case Histories in Geotechnical Engineering. No. 2.16, 1–8. Sinnreich, J., & Simpson, R. C. (2013). Base Grouting Case Studies Including Full Scale Comparative Load Testing. Seventh International Conference on Case Histories in Geotechnical Engineering. No. 2.16, 1–8.
go back to reference Skempton, A. W. (1986). Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation. Geotechnique, 36(3), 425–447.CrossRef Skempton, A. W. (1986). Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation. Geotechnique, 36(3), 425–447.CrossRef
go back to reference Standards Australia. (1998a). Methods of testing soils for engineering purposes—Method 6.2.2: Soil strength and consolidation tests—Direct shear test using a shear box (AS 1289.6.2.2) (pp. 1–25). Standards Australia. (1998a). Methods of testing soils for engineering purposes—Method 6.2.2: Soil strength and consolidation tests—Direct shear test using a shear box (AS 1289.6.2.2) (pp. 1–25).
go back to reference Standards Australia. (1998b). Methods of testing soils for engineering purposes—Method 6.6.1: Soil strength and consolidation tests—Determination of the one-dimensional consolidation properties of a SOI (AS 1289.6.6.1) (pp. 1–12). Standards Australia. (1998b). Methods of testing soils for engineering purposes—Method 6.6.1: Soil strength and consolidation tests—Determination of the one-dimensional consolidation properties of a SOI (AS 1289.6.6.1) (pp. 1–12).
go back to reference Standards Australia. (2009). Piling—Design and installation (AS 2159) (pp. 1–97). Standards Australia. (2009). Piling—Design and installation (AS 2159) (pp. 1–97).
go back to reference Standards Australia. (2016a). Methods of testing soils for engineering purposes—Method 6.4.1: Determination of compressive strength of a soil—Compressive strength of a specimen tested in undrained triaxial compression without measurement of pore water pressure (AS 1289.6.4.1) (pp. 1–9). Standards Australia. (2016a). Methods of testing soils for engineering purposes—Method 6.4.1: Determination of compressive strength of a soil—Compressive strength of a specimen tested in undrained triaxial compression without measurement of pore water pressure (AS 1289.6.4.1) (pp. 1–9).
go back to reference Standards Australia. (2016b). Methods of testing soils for engineering purposes—Method 6.4.2: Determination of compressive strength of a soil—Compressive strength of a saturated specimen tested in undrained triaxial compression with measurement of pore water pressure (AS 1289.6.4.2) (pp. 1–17). Standards Australia. (2016b). Methods of testing soils for engineering purposes—Method 6.4.2: Determination of compressive strength of a soil—Compressive strength of a saturated specimen tested in undrained triaxial compression with measurement of pore water pressure (AS 1289.6.4.2) (pp. 1–17).
go back to reference Taesiri, Y., & Chantaranimi, P. (2001). Slope stabilizations of highway embankments adjacent to irrigation/drainage canal. In Proceedings of Soft Ground Improvement and Geosynthetics Applications (pp. 211–227). Thailand. Taesiri, Y., & Chantaranimi, P. (2001). Slope stabilizations of highway embankments adjacent to irrigation/drainage canal. In Proceedings of Soft Ground Improvement and Geosynthetics Applications (pp. 211–227). Thailand.
go back to reference Taylor, D. W. (1948). Fundamentals of soil mechanics. New York, NY: John Wiley & Sons.CrossRef Taylor, D. W. (1948). Fundamentals of soil mechanics. New York, NY: John Wiley & Sons.CrossRef
go back to reference Terzaghi, K. (1944). Theoretical soil mechanics. New York: Chapman and Hali, Limited John Wiley and Sons. Terzaghi, K. (1944). Theoretical soil mechanics. New York: Chapman and Hali, Limited John Wiley and Sons.
go back to reference Tomlinson, M. J. (1980). Foundation design and construction (5th ed.). Harlow, England: Longman Scientific & Technical. Tomlinson, M. J. (1980). Foundation design and construction (5th ed.). Harlow, England: Longman Scientific & Technical.
go back to reference Tomlinson, M. J. (2001). Foundation design and construction. Pitman Publishing Limited, 1963, 1–583. Tomlinson, M. J. (2001). Foundation design and construction. Pitman Publishing Limited, 1963, 1–583.
go back to reference Tomlinson, M. J., & Boorman, R. (2001). Foundation design and construction (7th ed.). New York; Harlow, England: Prentice Hall. Tomlinson, M. J., & Boorman, R. (2001). Foundation design and construction (7th ed.). New York; Harlow, England: Prentice Hall.
go back to reference Uddin, K., Balasubramaniam, A., & Bergado, D. (1997). Engineering behavior of cement-treated Bangkok soft clay. Geotechnical Engineering, 28, 89–119. Uddin, K., Balasubramaniam, A., & Bergado, D. (1997). Engineering behavior of cement-treated Bangkok soft clay. Geotechnical Engineering, 28, 89–119.
go back to reference Vesic, A. S. (1977). Design of pile foundations. NCHRP synthesis of highway practice (42). Vesic, A. S. (1977). Design of pile foundations. NCHRP synthesis of highway practice (42).
go back to reference Voottipruex, P., Suksawat, T., Bergado, D. T., & Jamsawang, P. (2011). Numerical simulations and parametric study of SDCM and DCM piles under full scale axial and lateral loads. Computers and Geotechnics, 38(3), 318–329.CrossRef Voottipruex, P., Suksawat, T., Bergado, D. T., & Jamsawang, P. (2011). Numerical simulations and parametric study of SDCM and DCM piles under full scale axial and lateral loads. Computers and Geotechnics, 38(3), 318–329.CrossRef
go back to reference Wang, S. T., & Reese, L. C. (1993). Laterally loaded pile analysis program for the microcomputer (No. FHWA-SA-91–048). US Department of Transportation. Wang, S. T., & Reese, L. C. (1993). Laterally loaded pile analysis program for the microcomputer (No. FHWA-SA-91–048). US Department of Transportation.
go back to reference Werasak, R., & Meng, J. (2013). Field testing of stiffened deep cement mixing piles under lateral cyclic loading. Earthquake Engineering and Engineering Vibration, 12(2), 261–265.CrossRef Werasak, R., & Meng, J. (2013). Field testing of stiffened deep cement mixing piles under lateral cyclic loading. Earthquake Engineering and Engineering Vibration, 12(2), 261–265.CrossRef
go back to reference Wilkins, E., & Castelli, R. J. (2004). Osterberg load cell test results on base grouted bored piles in Bangladesh. In GeoSupport 2004: Drilled Shaft, Microiling, Deep Mixing, Remedial Methods, and Specialty Foundation Systems (pp. 587–602). Wilkins, E., & Castelli, R. J. (2004). Osterberg load cell test results on base grouted bored piles in Bangladesh. In GeoSupport 2004: Drilled Shaft, Microiling, Deep Mixing, Remedial Methods, and Specialty Foundation Systems (pp. 587–602).
go back to reference Wonglert, A., & Jongpradist, P. (2015). Impact of reinforced core on performance and failure behavior of stiffened deep cement mixing piles. Computers and Geotechnics, 69, 93–104.CrossRef Wonglert, A., & Jongpradist, P. (2015). Impact of reinforced core on performance and failure behavior of stiffened deep cement mixing piles. Computers and Geotechnics, 69, 93–104.CrossRef
go back to reference Xu, G. (2009). Effects of frozen soils on site response and lateral behavior of concrete-filled steel pipe pile (dissertation). ProQuest Dissertations Publishing. Xu, G. (2009). Effects of frozen soils on site response and lateral behavior of concrete-filled steel pipe pile (dissertation). ProQuest Dissertations Publishing.
go back to reference Yang, H., & Xiao, D. (2011). Back analysis of static pile load test for SPT-based pile design: A Singapore experience. In Advances in Pile Foundations, Geosynthetics, Geoinvestigations, and Foundation Failure Analysis and Repairs (pp. 144–152). Yang, H., & Xiao, D. (2011). Back analysis of static pile load test for SPT-based pile design: A Singapore experience. In Advances in Pile Foundations, Geosynthetics, Geoinvestigations, and Foundation Failure Analysis and Repairs (pp. 144–152).
go back to reference Yang, J., Wang, F., Lu, S., & Wang, C. (2014). Application of compactness detection to complicated concrete-filled steel tube by ultrasonic method. Transactions of Tianjin University, 20(2), 126–132.CrossRef Yang, J., Wang, F., Lu, S., & Wang, C. (2014). Application of compactness detection to complicated concrete-filled steel tube by ultrasonic method. Transactions of Tianjin University, 20(2), 126–132.CrossRef
go back to reference Yang, P., Hu, H.-S., & Xu, J.-F. (2012). Settlement characteristics of pile composite foundation under staged loading. Procedia Environmental Sciences, 12, 1055–1062.CrossRef Yang, P., Hu, H.-S., & Xu, J.-F. (2012). Settlement characteristics of pile composite foundation under staged loading. Procedia Environmental Sciences, 12, 1055–1062.CrossRef
go back to reference Yttrup, P., & Abramsson, G. (2003). Ultimate strength of steel screw piles in sand. Australian Geomechanics: Journal and News of the Australian Geomechanics Society, 38(1), 17. Yttrup, P., & Abramsson, G. (2003). Ultimate strength of steel screw piles in sand. Australian Geomechanics: Journal and News of the Australian Geomechanics Society, 38(1), 17.
go back to reference Yu, F., & Yang, J. (2012). Base capacity of open-ended steel pipe piles in sand. Journal of Geotechnical and Geoenvironmental Engineering, 138(9), 1116–1128.CrossRef Yu, F., & Yang, J. (2012). Base capacity of open-ended steel pipe piles in sand. Journal of Geotechnical and Geoenvironmental Engineering, 138(9), 1116–1128.CrossRef
go back to reference Zhang, H., Chen, S., Zhao, Y. B., & Li, M. W. (2011). The application of GFRP in shield tunnel construction. Railway Standard Design, 3(24), 73–76. Zhang, H., Chen, S., Zhao, Y. B., & Li, M. W. (2011). The application of GFRP in shield tunnel construction. Railway Standard Design, 3(24), 73–76.
go back to reference Zhang, H. W., Smith, S. T., & Kim, S. J. (2012). Optimisation of carbon and glass FRP anchor design. Construction and Building Materials, 32, 1–12.CrossRef Zhang, H. W., Smith, S. T., & Kim, S. J. (2012). Optimisation of carbon and glass FRP anchor design. Construction and Building Materials, 32, 1–12.CrossRef
go back to reference Zhou, J., Oh, E., Zhang, X., Jiang, H., Bolton, M., & Wang, P. (2017a). Compressive and Uplift Static Load Tests of Shaft and Base Grouted Concrete Bored Piles. 27th International Ocean and Polar Engineering Conference (pp. 685–692). Zhou, J., Oh, E., Zhang, X., Jiang, H., Bolton, M., & Wang, P. (2017a). Compressive and Uplift Static Load Tests of Shaft and Base Grouted Concrete Bored Piles. 27th International Ocean and Polar Engineering Conference (pp. 685–692).
go back to reference Zhou, J. L., Zhang, X., Jiang, H. S., Bolton, M., & Oh, E. (2016). A review of geotechnical application of fibre reinforced polymer materials. In 8th International Conference on Fibre-Reinforced Polymer Composite in Civil Engineering (pp. 856–862). Zhou, J. L., Zhang, X., Jiang, H. S., Bolton, M., & Oh, E. (2016). A review of geotechnical application of fibre reinforced polymer materials. In 8th International Conference on Fibre-Reinforced Polymer Composite in Civil Engineering (pp. 856–862).
go back to reference Zhou, D., Lam, K. H., Chen, Y., Zhang, Q., Chiu, Y. C., Luo, H., & Chan, H. L. W. (2012). Lead-free piezoelectric single crystal based 1–3 composites for ultrasonic transducer applications. Sensors and Actuators a: Physical, 182, 95–100.CrossRef Zhou, D., Lam, K. H., Chen, Y., Zhang, Q., Chiu, Y. C., Luo, H., & Chan, H. L. W. (2012). Lead-free piezoelectric single crystal based 1–3 composites for ultrasonic transducer applications. Sensors and Actuators a: Physical, 182, 95–100.CrossRef
Metadata
Title
General Principles and Practices
Authors
Jialin Zhou
Erwin Oh
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-6183-6_2