Skip to main content
Top

2014 | OriginalPaper | Chapter

2. General Properties of Bulk SiC

Authors : Jiyang Fan, Paul K. Chu

Published in: Silicon Carbide Nanostructures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The fabrication and properties of silicon carbide crystals have been extensively studied because as a wide bandgap semiconductor, silicon carbide is ideal for electronic applications requiring high temperature, high frequency, and high power.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Harris GL (ed) (1995) Properties of silicon carbide. INSPEC, London Harris GL (ed) (1995) Properties of silicon carbide. INSPEC, London
2.
go back to reference Saddow SE, Agarwal A (eds) (2004) Advances in silicon carbide processing and applications. Artech House, Norwood Saddow SE, Agarwal A (eds) (2004) Advances in silicon carbide processing and applications. Artech House, Norwood
3.
go back to reference Shur M, Rumyantsev S, Levinshtein M (eds) (2006/2007) SiC materials and devices (vols 1 and 2). World Scientific, Singapore Shur M, Rumyantsev S, Levinshtein M (eds) (2006/2007) SiC materials and devices (vols 1 and 2). World Scientific, Singapore
4.
go back to reference Nicolussi GK, Davis AM, Pellin MJ, Lewis RS, Clayton RN, Amari S (1997) s-Process zirconium in presolar silicon carbide grains. Science 277:1281–1283 Nicolussi GK, Davis AM, Pellin MJ, Lewis RS, Clayton RN, Amari S (1997) s-Process zirconium in presolar silicon carbide grains. Science 277:1281–1283
5.
go back to reference Huss GR, Lewis RS (1995) Presolar diamond, SiC, and graphite in primitive chondrites: abundances as a function of meteorite class and petrologic type. Geochim Cosmochim Acta 59:115–160 Huss GR, Lewis RS (1995) Presolar diamond, SiC, and graphite in primitive chondrites: abundances as a function of meteorite class and petrologic type. Geochim Cosmochim Acta 59:115–160
6.
go back to reference Huss GR, Meshik AP, Smith JB, Hohenberg CM (2003) Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula. Geochim Cosmochim Acta 67:4823–4848 Huss GR, Meshik AP, Smith JB, Hohenberg CM (2003) Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula. Geochim Cosmochim Acta 67:4823–4848
7.
go back to reference Nicolussi GK, Pellin MJ, Lewis RS, Davis AM, Clayton RN, Amari S (1998) Strontium isotopic composition in individual circumstellar silicon carbide grains: a record of s-process nucleosynthesis. Phys Rev Lett 81:3583–3586 Nicolussi GK, Pellin MJ, Lewis RS, Davis AM, Clayton RN, Amari S (1998) Strontium isotopic composition in individual circumstellar silicon carbide grains: a record of s-process nucleosynthesis. Phys Rev Lett 81:3583–3586
8.
go back to reference Daulton TL, Bernatowicz TJ, Lewis RS, Messenger S, Stadermann FJ, Amari S (2002) Polytype distribution in circumstellar silicon carbide. Science 296:1852–1855 Daulton TL, Bernatowicz TJ, Lewis RS, Messenger S, Stadermann FJ, Amari S (2002) Polytype distribution in circumstellar silicon carbide. Science 296:1852–1855
9.
go back to reference Gallino R, Raiteri CM, Busso M (1993) Carbon stars and isotopic Ba anomalies in meteoritic SiC grains. Astrophys J 410:400–411 Gallino R, Raiteri CM, Busso M (1993) Carbon stars and isotopic Ba anomalies in meteoritic SiC grains. Astrophys J 410:400–411
10.
go back to reference Hoppe P, Amari S, Zinner E, Ireland T, Lewis RS (1994) Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite. Astrophys J 430:870–890 Hoppe P, Amari S, Zinner E, Ireland T, Lewis RS (1994) Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite. Astrophys J 430:870–890
11.
go back to reference Amari S, Nittler LR, Zinner E, Lodders K, Lewis RS (2001) Presolar SiC grains of type A and B: their isotopic compositions and stellar origins. Astrophys J 559:463–483 Amari S, Nittler LR, Zinner E, Lodders K, Lewis RS (2001) Presolar SiC grains of type A and B: their isotopic compositions and stellar origins. Astrophys J 559:463–483
12.
go back to reference Lugaro M, Davis AM, Gallino R, Pellin MJ, Straniero O, Käppeler F (2003) Isotopic compositions of strontium, zirconium, molybdenum, and barium in single presolar SiC grains and asymptotic giant branch stars. Astrophys J 593:486–508 Lugaro M, Davis AM, Gallino R, Pellin MJ, Straniero O, Käppeler F (2003) Isotopic compositions of strontium, zirconium, molybdenum, and barium in single presolar SiC grains and asymptotic giant branch stars. Astrophys J 593:486–508
13.
go back to reference Clément D, Mutschke H, Klein R, Henning Th (2003) New laboratory spectra of isolated β-SiC nanoparticles: comparison with spectra taken by the Infrared Space Observatory. Astrophys J 594:642–650 Clément D, Mutschke H, Klein R, Henning Th (2003) New laboratory spectra of isolated β-SiC nanoparticles: comparison with spectra taken by the Infrared Space Observatory. Astrophys J 594:642–650
14.
go back to reference Speck AK, Barlow MJ, Skinner CJ (1997) The nature of the silicon carbide in carbon star outflows. Mon Not R Astron Soc 288:431–456 Speck AK, Barlow MJ, Skinner CJ (1997) The nature of the silicon carbide in carbon star outflows. Mon Not R Astron Soc 288:431–456
15.
go back to reference Amari S, Hoppe P, Zinner E, Lewis RS (1992) Interstellar SiC with unusual isotopic compositions: grains from a supernova. Astrophys J 394:L43–L46 Amari S, Hoppe P, Zinner E, Lewis RS (1992) Interstellar SiC with unusual isotopic compositions: grains from a supernova. Astrophys J 394:L43–L46
16.
go back to reference Nittler LR, Amari S, Zinner E, Woosley SE, Lewis RS (1996) Extinct 44Ti in presolar graphite and SiC: proof of a supernova origin. Astrophys J 462:L31–L34 Nittler LR, Amari S, Zinner E, Woosley SE, Lewis RS (1996) Extinct 44Ti in presolar graphite and SiC: proof of a supernova origin. Astrophys J 462:L31–L34
17.
go back to reference Hoppe P, Strebel R, Eberhardt P, Amari S, Lewis RS (1996) Small SiC grains and a nitride grain of circumstellar origin from the Murchison meteorite: implications for stellar evolution and nucleosynthesis. Geochim Cosmochim Acta 60:883–907 Hoppe P, Strebel R, Eberhardt P, Amari S, Lewis RS (1996) Small SiC grains and a nitride grain of circumstellar origin from the Murchison meteorite: implications for stellar evolution and nucleosynthesis. Geochim Cosmochim Acta 60:883–907
18.
go back to reference Clayton DD, Arnett D, Kane J, Meyer BS (1997) Type X silicon carbide presolar grains: type Ia supernova condensates. Astrophys J 486:824–834 Clayton DD, Arnett D, Kane J, Meyer BS (1997) Type X silicon carbide presolar grains: type Ia supernova condensates. Astrophys J 486:824–834
19.
go back to reference Junginger HG, van Haeringen W (1970) Energy band structures of four polytypes of silicon carbide calculated with the empirical pseudopotential method. Phys Stat Sol 37:709–719 Junginger HG, van Haeringen W (1970) Energy band structures of four polytypes of silicon carbide calculated with the empirical pseudopotential method. Phys Stat Sol 37:709–719
20.
go back to reference Hemstreet LA Jr, Fong CY (1972) Electronic band structure and optical properties of 3C-SiC, BP, and BN. Phys Rev B 6:1464–1480 Hemstreet LA Jr, Fong CY (1972) Electronic band structure and optical properties of 3C-SiC, BP, and BN. Phys Rev B 6:1464–1480
21.
go back to reference Choyke WJ, Hamilton DR, Patrick L (1964) Optical properties of cubic SiC: luminescence of nitrogen-exciton complexes, and interband absorption. Phys Rev 133:A1163–A1166 Choyke WJ, Hamilton DR, Patrick L (1964) Optical properties of cubic SiC: luminescence of nitrogen-exciton complexes, and interband absorption. Phys Rev 133:A1163–A1166
22.
go back to reference Backes WH, Bobbert PA, van Haeringen W (1994) Energy-band structure of SiC polytypes by interface matching of electronic wave functions. Phys Rev B 49:7564–7568 Backes WH, Bobbert PA, van Haeringen W (1994) Energy-band structure of SiC polytypes by interface matching of electronic wave functions. Phys Rev B 49:7564–7568
23.
go back to reference Lubinsky AR, Ellis DE, Painter GS (1975) Electronic structure and optical properties of 3C-SiC. Phys Rev B 11:1537–1546 Lubinsky AR, Ellis DE, Painter GS (1975) Electronic structure and optical properties of 3C-SiC. Phys Rev B 11:1537–1546
24.
go back to reference Rohlfing M, Krüger P, Pollmann J (1993) Quasiparticle band-structure calculations for C, Si, Ge, GaAs, and SiC using Gaussian-orbital basis sets. Phys Rev B 48:17791–17805 Rohlfing M, Krüger P, Pollmann J (1993) Quasiparticle band-structure calculations for C, Si, Ge, GaAs, and SiC using Gaussian-orbital basis sets. Phys Rev B 48:17791–17805
25.
go back to reference Käckell P, Wenzien B, Bechstedt F (1994) Electronic properties of cubic and hexagonal SiC polytypes from ab initio calculations. Phys Rev B 50:10761–10768 Käckell P, Wenzien B, Bechstedt F (1994) Electronic properties of cubic and hexagonal SiC polytypes from ab initio calculations. Phys Rev B 50:10761–10768
26.
go back to reference Persson C, Lindefelt U (1996) Detailed band structure for 3C-, 2H-, 4H-, 6H-SiC, and Si around the fundamental band gap. Phys Rev B 54:10257–10260 Persson C, Lindefelt U (1996) Detailed band structure for 3C-, 2H-, 4H-, 6H-SiC, and Si around the fundamental band gap. Phys Rev B 54:10257–10260
27.
go back to reference Persson C, Lindefelt U (1997) Relativistic band structure calculation of cubic and hexagonal SiC polytypes. J Appl Phys 82:5496–5508 Persson C, Lindefelt U (1997) Relativistic band structure calculation of cubic and hexagonal SiC polytypes. J Appl Phys 82:5496–5508
28.
go back to reference Park CH, Cheong B-H, Lee K-H, Chang KJ (1994) Structural and electronic properties of cubic, 2H, 4H, and 6H SiC. Phys Rev B 49:4485–4493 Park CH, Cheong B-H, Lee K-H, Chang KJ (1994) Structural and electronic properties of cubic, 2H, 4H, and 6H SiC. Phys Rev B 49:4485–4493
29.
go back to reference Wenzien B, Käckell P, Bechstedt F, Cappellini G (1995) Quasiparticle band structure of silicon carbide polytypes. Phys Rev B 52:10897–10905 Wenzien B, Käckell P, Bechstedt F, Cappellini G (1995) Quasiparticle band structure of silicon carbide polytypes. Phys Rev B 52:10897–10905
30.
go back to reference Lambrecht WRL, Limpijumnong S, Rashkeev SN, Segall B (1997) Electronic band structure of SiC polytypes: a discussion of theory and experiment. Phys Stat Sol (b) 202:5–33 Lambrecht WRL, Limpijumnong S, Rashkeev SN, Segall B (1997) Electronic band structure of SiC polytypes: a discussion of theory and experiment. Phys Stat Sol (b) 202:5–33
31.
go back to reference Dalibor T, Pensl G, Matsunami H, Kimoto T, Choyke WJ, Schöner A, Nordell N (1997) Deep defect centers in silicon carbide monitored with deep level transient spectroscopy. Phys Stat Sol (a) 162:199–225 Dalibor T, Pensl G, Matsunami H, Kimoto T, Choyke WJ, Schöner A, Nordell N (1997) Deep defect centers in silicon carbide monitored with deep level transient spectroscopy. Phys Stat Sol (a) 162:199–225
32.
go back to reference Itoh H, Hayakawa N, Nashiyama I, Sakuma E (1989) Electron spin resonance in electron-irradiated 3C-SiC. J Appl Phys 66:4529–4531 Itoh H, Hayakawa N, Nashiyama I, Sakuma E (1989) Electron spin resonance in electron-irradiated 3C-SiC. J Appl Phys 66:4529–4531
33.
go back to reference Itoh H, Yoshikawa M, Nashiyama I, Okumura H, Misawa S, Yoshida S (1995) Photoluminescence of radiation induced defects in 3C-SiC epitaxially grown on Si. J Appl Phys 77:837–842 Itoh H, Yoshikawa M, Nashiyama I, Okumura H, Misawa S, Yoshida S (1995) Photoluminescence of radiation induced defects in 3C-SiC epitaxially grown on Si. J Appl Phys 77:837–842
34.
go back to reference Wimbauer T, Meyer BK, Hofstaetter A, Scharmann A, Overhof H (1997) Negatively charged Si vacancy in 4H SiC: a comparison between theory and experiment. Phys Rev B 56:7384–7388 Wimbauer T, Meyer BK, Hofstaetter A, Scharmann A, Overhof H (1997) Negatively charged Si vacancy in 4H SiC: a comparison between theory and experiment. Phys Rev B 56:7384–7388
35.
go back to reference Sörman E, Son NT, Chen WM, Kordina O, Hallin C, Janzén E (2000) Silicon vacancy related defect in 4H and 6H SiC. Phys Rev B 61:2613–2620 Sörman E, Son NT, Chen WM, Kordina O, Hallin C, Janzén E (2000) Silicon vacancy related defect in 4H and 6H SiC. Phys Rev B 61:2613–2620
36.
go back to reference Torpo L, Nieminen RM, Laasonen KE, Pöykkö S (1999) Silicon vacancy in SiC: a high-spin state defect. Appl Phys Lett 74:221–223 Torpo L, Nieminen RM, Laasonen KE, Pöykkö S (1999) Silicon vacancy in SiC: a high-spin state defect. Appl Phys Lett 74:221–223
37.
go back to reference Fan J, Chu PK (2010) Group IV nanoparticles: synthesis, properties, and biological applications. Small 6:2080–2098 Fan J, Chu PK (2010) Group IV nanoparticles: synthesis, properties, and biological applications. Small 6:2080–2098
38.
go back to reference Kurtsiefer C, Mayer S, Zarda P, Weinfurter H (2000) Stable solid-state source of single photons. Phys Rev Lett 85:290–293 Kurtsiefer C, Mayer S, Zarda P, Weinfurter H (2000) Stable solid-state source of single photons. Phys Rev Lett 85:290–293
39.
go back to reference Mizuochi N, Makino T, Kato H, Takeuchi D, Ogura M, Okushi H, Nothaft M, Neumann P, Gali A, Jelezko F, Wrachtrup J, Yamasaki S (2012) Electrically driven single-photon source at room temperature in diamond. Nat Photonics 6:299–303 Mizuochi N, Makino T, Kato H, Takeuchi D, Ogura M, Okushi H, Nothaft M, Neumann P, Gali A, Jelezko F, Wrachtrup J, Yamasaki S (2012) Electrically driven single-photon source at room temperature in diamond. Nat Photonics 6:299–303
40.
go back to reference Baranov PG, Bundakova AP, Soltamova AA, Orlinskii SB, Borovykh IV, Zondervan R, Verberk R, Schmidt J (2011) Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys Rev B 83:125203 Baranov PG, Bundakova AP, Soltamova AA, Orlinskii SB, Borovykh IV, Zondervan R, Verberk R, Schmidt J (2011) Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys Rev B 83:125203
41.
go back to reference Soltamov VA, Soltamova AA, Baranov PG, Proskuryakov II (2012) Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC. Phys Rev Lett 108:226402 Soltamov VA, Soltamova AA, Baranov PG, Proskuryakov II (2012) Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC. Phys Rev Lett 108:226402
42.
go back to reference Son NT, Hai PN, Janzén E (2001) Carbon vacancy-related defect in 4H and 6H SiC. Phys Rev B 63:201201(R) Son NT, Hai PN, Janzén E (2001) Carbon vacancy-related defect in 4H and 6H SiC. Phys Rev B 63:201201(R)
43.
go back to reference Danno K, Kimoto T (2006) Investigation of deep levels in n-type 4H-SiC epilayers irradiated with low-energy electrons. J Appl Phys 100:113728 Danno K, Kimoto T (2006) Investigation of deep levels in n-type 4H-SiC epilayers irradiated with low-energy electrons. J Appl Phys 100:113728
44.
go back to reference Eberlein TAG, Jones R, Briddon PR (2003) Z1/Z2 defects in 4H-SiC. Phys Rev Lett 90:225502 Eberlein TAG, Jones R, Briddon PR (2003) Z1/Z2 defects in 4H-SiC. Phys Rev Lett 90:225502
45.
go back to reference Dannefaer S, Craigen D, Kerr D (1995) Carbon and silicon vacancies in electron-irradiated 6H-SiC. Phys Rev B 51:1928–1930 Dannefaer S, Craigen D, Kerr D (1995) Carbon and silicon vacancies in electron-irradiated 6H-SiC. Phys Rev B 51:1928–1930
46.
go back to reference Aboelfotoh MO, Doyle JP (1999) Defect energy levels in electron-irradiated and deuterium-implanted 6H silicon carbide. Phys Rev B 59:10823–10829 Aboelfotoh MO, Doyle JP (1999) Defect energy levels in electron-irradiated and deuterium-implanted 6H silicon carbide. Phys Rev B 59:10823–10829
47.
go back to reference Zywietz A, Furthmüller J, Bechstedt F (1999) Vacancies in SiC: influence of Jahn-Teller distortions, spin effects, and crystal structure. Phys Rev B 59:15166–15180 Zywietz A, Furthmüller J, Bechstedt F (1999) Vacancies in SiC: influence of Jahn-Teller distortions, spin effects, and crystal structure. Phys Rev B 59:15166–15180
48.
go back to reference Choyke J, Patrick L (1971) Photoluminescence of radiation defects in cubic SiC: localized modes and Jahn-Teller effect. Phys Rev B 4:1843–1847 Choyke J, Patrick L (1971) Photoluminescence of radiation defects in cubic SiC: localized modes and Jahn-Teller effect. Phys Rev B 4:1843–1847
49.
go back to reference Patrick L, Choyke J (1972) Photoluminescence of radiation defects in ion-implanted 6H SiC. Phys Rev B 5:3253–3259 Patrick L, Choyke J (1972) Photoluminescence of radiation defects in ion-implanted 6H SiC. Phys Rev B 5:3253–3259
50.
go back to reference Haberstroh Ch, Helbig R, Stein RA (1994) Some new features of the photoluminescence of SiC(6H), SiC(4H), and SiC(15R). J Appl Phys 76:509–513 Haberstroh Ch, Helbig R, Stein RA (1994) Some new features of the photoluminescence of SiC(6H), SiC(4H), and SiC(15R). J Appl Phys 76:509–513
51.
go back to reference Hemmingsson CG, Son NT, Ellison A, Zhang J, Janzén E (1998) Negative-U centers in 4H silicon carbide. Phys Rev B 58:R10119–R10122 Hemmingsson CG, Son NT, Ellison A, Zhang J, Janzén E (1998) Negative-U centers in 4H silicon carbide. Phys Rev B 58:R10119–R10122
52.
go back to reference Son NT, Carlsson P, ul Hassan J, Janzén E, Umeda T, Isoya J, Gali A, Bockstedte M, Morishita N, Ohshima T, Itoh H (2006) Divacancy in 4H-SiC. Phys Rev Lett 96:055501 Son NT, Carlsson P, ul Hassan J, Janzén E, Umeda T, Isoya J, Gali A, Bockstedte M, Morishita N, Ohshima T, Itoh H (2006) Divacancy in 4H-SiC. Phys Rev Lett 96:055501
53.
go back to reference Torpo L, Staab TEM, Nieminen RM (2002) Divacancy in 3C- and 4H-SiC: an extremely stable defect. Phys Rev B 65:085202 Torpo L, Staab TEM, Nieminen RM (2002) Divacancy in 3C- and 4H-SiC: an extremely stable defect. Phys Rev B 65:085202
54.
go back to reference Koehl WF, Buckley BB, Heremans FJ, Calusine G, Awschalom DD (2011) Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479:84–88 Koehl WF, Buckley BB, Heremans FJ, Calusine G, Awschalom DD (2011) Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479:84–88
55.
go back to reference Falk AL, Buckley BB, Calusine G, Koehl WF, Dobrovitski VV, Politi A, Zorman CA, Feng PX-L, Awschalom DD (2013) Polytype control of spin qubits in silicon carbide. Nat Commun 4:1819 Falk AL, Buckley BB, Calusine G, Koehl WF, Dobrovitski VV, Politi A, Zorman CA, Feng PX-L, Awschalom DD (2013) Polytype control of spin qubits in silicon carbide. Nat Commun 4:1819
56.
go back to reference Kawasuso A, Itoh H, Okada S, Okumura H (1996) Annealing processes of vacancy-type defects in electron-irradiated and as-grown 6H-SiC studied by positron lifetime spectroscopy. J Appl Phys 80:5639–5645 Kawasuso A, Itoh H, Okada S, Okumura H (1996) Annealing processes of vacancy-type defects in electron-irradiated and as-grown 6H-SiC studied by positron lifetime spectroscopy. J Appl Phys 80:5639–5645
57.
go back to reference Hiyoshi T, Kimoto T (2009) Elimination of the major deep levels in n- and p-Type 4H-SiC by two-step thermal treatment. Appl Phys Exp 2:091101 Hiyoshi T, Kimoto T (2009) Elimination of the major deep levels in n- and p-Type 4H-SiC by two-step thermal treatment. Appl Phys Exp 2:091101
58.
go back to reference Nagesh V, Farmer JW, Davis RF, Kong HS (1987) Defects in neutron irradiated SiC. Appl Phys Lett 50:1138–1140 Nagesh V, Farmer JW, Davis RF, Kong HS (1987) Defects in neutron irradiated SiC. Appl Phys Lett 50:1138–1140
59.
go back to reference Torpo L, Pöykkö S, Nieminen RM (1998) Antisites in silicon carbide. Phys Rev B 57:6243–6246 Torpo L, Pöykkö S, Nieminen RM (1998) Antisites in silicon carbide. Phys Rev B 57:6243–6246
60.
go back to reference Egilsson T, Henry A, Ivanov IG, Lindström JL, Janzén E (1999) Photoluminescence of electron-irradiated 4H-SiC. Phys Rev B 59:8008–8014 Egilsson T, Henry A, Ivanov IG, Lindström JL, Janzén E (1999) Photoluminescence of electron-irradiated 4H-SiC. Phys Rev B 59:8008–8014
61.
go back to reference Eberlein TAG, Fall CJ, Jones R, Briddon PR, Öberg S (2002) Alphabet luminescence lines in 4H-SiC. Phys Rev B 65:184108 Eberlein TAG, Fall CJ, Jones R, Briddon PR, Öberg S (2002) Alphabet luminescence lines in 4H-SiC. Phys Rev B 65:184108
62.
go back to reference Gali A, Deák P, Rauls E, Son NT, Ivanov IG, Carlsson FHC, Janzén E, Choyke WJ (2003) Correlation between the antisite pair and the D I center in SiC. Phys Rev B 67:155203 Gali A, Deák P, Rauls E, Son NT, Ivanov IG, Carlsson FHC, Janzén E, Choyke WJ (2003) Correlation between the antisite pair and the D I center in SiC. Phys Rev B 67:155203
63.
go back to reference Eberlein TAG, Jones R, Öberg S, Briddon PR (2006) Density functional theory calculation of the D I optical center in SiC. Phys Rev B 74:144106 Eberlein TAG, Jones R, Öberg S, Briddon PR (2006) Density functional theory calculation of the D I optical center in SiC. Phys Rev B 74:144106
64.
go back to reference Patrick L, Choyke WJ (1973) Localized vibrational modes of a persistent defect in ion-implanted SiC. J Phys Chem Solids 34:565 Patrick L, Choyke WJ (1973) Localized vibrational modes of a persistent defect in ion-implanted SiC. J Phys Chem Solids 34:565
65.
go back to reference Freitas JA, Bishop SG, Edmond JA, Ryu J, Davis RF (1987) Photoluminescence spectroscopy of ion-implanted 3C-SiC grown by chemical vapor deposition. J Appl Phys 61:2011–2016 Freitas JA, Bishop SG, Edmond JA, Ryu J, Davis RF (1987) Photoluminescence spectroscopy of ion-implanted 3C-SiC grown by chemical vapor deposition. J Appl Phys 61:2011–2016
66.
go back to reference Mattausch A, Bockstedte M, Pankratov O (2004) Carbon antisite clusters in SiC: a possible pathway to the D II center. Phys Rev B 69:045322 Mattausch A, Bockstedte M, Pankratov O (2004) Carbon antisite clusters in SiC: a possible pathway to the D II center. Phys Rev B 69:045322
67.
go back to reference Lingner Th, Greulich-Weber S, Spaeth J-M, Gerstmann U, Rauls E, Hajnal Z, Frauenheim Th, Overhof H (2001) Structure of the silicon vacancy in 6H-SiC after annealing identified as the carbon vacancy–carbon antisite pair. Phys Rev B 64:245212 Lingner Th, Greulich-Weber S, Spaeth J-M, Gerstmann U, Rauls E, Hajnal Z, Frauenheim Th, Overhof H (2001) Structure of the silicon vacancy in 6H-SiC after annealing identified as the carbon vacancy–carbon antisite pair. Phys Rev B 64:245212
68.
go back to reference Umeda T, Son NT, Isoya J, Janzén E, Ohshima T, Morishita N, Itoh H, Gali A, Bockstedte M (2006) Identification of the carbon antisite-vacancy pair in 4H-SiC. Phys Rev Lett 96:145501 Umeda T, Son NT, Isoya J, Janzén E, Ohshima T, Morishita N, Itoh H, Gali A, Bockstedte M (2006) Identification of the carbon antisite-vacancy pair in 4H-SiC. Phys Rev Lett 96:145501
69.
go back to reference Steeds JW (2009) Photoluminescence study of the carbon antisite-vacancy pair in 4H- and 6H-SiC. Phys Rev B 80:245202 Steeds JW (2009) Photoluminescence study of the carbon antisite-vacancy pair in 4H- and 6H-SiC. Phys Rev B 80:245202
70.
go back to reference Castelletto S, Johnson BC, Ivády V, Stavrias N, Umeda T, Gali A, Ohshima T (2014) A silicon carbide room-temperature single-photon source. Nat Mater 13:151–156 Castelletto S, Johnson BC, Ivády V, Stavrias N, Umeda T, Gali A, Ohshima T (2014) A silicon carbide room-temperature single-photon source. Nat Mater 13:151–156
71.
go back to reference Wang C, Bernholc J, Davis RF (1988) Formation energies, abundances, and the electronic structure of native defects in cubic SiC. Phys Rev B 38:12752–12755 Wang C, Bernholc J, Davis RF (1988) Formation energies, abundances, and the electronic structure of native defects in cubic SiC. Phys Rev B 38:12752–12755
72.
go back to reference Torpo L, Marlo M, Staab TEM, Nieminen RM (2001) Comprehensive ab initio study of properties of monovacancies and antisites in 4H-SiC. J Phys: Condens Matter 13:6203–6231 Torpo L, Marlo M, Staab TEM, Nieminen RM (2001) Comprehensive ab initio study of properties of monovacancies and antisites in 4H-SiC. J Phys: Condens Matter 13:6203–6231
73.
go back to reference Storasta L, Bergman JP, Janzén E, Henry A, Lu J (2004) Deep levels created by low energy electron irradiation in 4H-SiC. J Appl Phys 96:4909–4915 Storasta L, Bergman JP, Janzén E, Henry A, Lu J (2004) Deep levels created by low energy electron irradiation in 4H-SiC. J Appl Phys 96:4909–4915
74.
go back to reference Devanathan R, Weber WJ, Gao F (2001) Atomic scale simulation of defect production in irradiated 3C-SiC. J Appl Phys 90:2303–2309 Devanathan R, Weber WJ, Gao F (2001) Atomic scale simulation of defect production in irradiated 3C-SiC. J Appl Phys 90:2303–2309
75.
go back to reference Gao F, Bylaska EJ, Weber WJ, Corrales LR (2001) Ab initio and empirical-potential studies of defect properties in 3C-SiC. Phys Rev B 64:245208 Gao F, Bylaska EJ, Weber WJ, Corrales LR (2001) Ab initio and empirical-potential studies of defect properties in 3C-SiC. Phys Rev B 64:245208
76.
go back to reference Gao F, Weber WJ, Posselt M, Belko V (2004) Atomistic study of intrinsic defect migration in 3C-SiC. Phys Rev B 69:245205 Gao F, Weber WJ, Posselt M, Belko V (2004) Atomistic study of intrinsic defect migration in 3C-SiC. Phys Rev B 69:245205
77.
go back to reference Bockstedte M, Mattausch A, Pankratov O (2003) Ab initio study of the migration of intrinsic defects in 3C-SiC. Phys Rev B 68:205201 Bockstedte M, Mattausch A, Pankratov O (2003) Ab initio study of the migration of intrinsic defects in 3C-SiC. Phys Rev B 68:205201
78.
go back to reference Bockstedte M, Mattausch A, Pankratov O (2004) Ab initio study of the annealing of vacancies and interstitials in cubic SiC: vacancy-interstitial recombination and aggregation of carbon interstitials. Phys Rev B 69:235202 Bockstedte M, Mattausch A, Pankratov O (2004) Ab initio study of the annealing of vacancies and interstitials in cubic SiC: vacancy-interstitial recombination and aggregation of carbon interstitials. Phys Rev B 69:235202
79.
go back to reference Gali A, Deák P, Ordejón P, Son NT, Janzén E, Choyke WJ (2003) Aggregation of carbon interstitials in silicon carbide: a theoretical study. Phys Rev B 68:125201 Gali A, Deák P, Ordejón P, Son NT, Janzén E, Choyke WJ (2003) Aggregation of carbon interstitials in silicon carbide: a theoretical study. Phys Rev B 68:125201
80.
go back to reference Rauls E, Frauenheim Th, Gali A, Deák P (2003) Theoretical study of vacancy diffusion and vacancy-assisted clustering of antisites in SiC. Phys Rev B 68:155208 Rauls E, Frauenheim Th, Gali A, Deák P (2003) Theoretical study of vacancy diffusion and vacancy-assisted clustering of antisites in SiC. Phys Rev B 68:155208
81.
go back to reference Amelinckx S, Strumane G, Webb WW (1960) Dislocations in silicon carbide. J Appl Phys 31:1359–1370 Amelinckx S, Strumane G, Webb WW (1960) Dislocations in silicon carbide. J Appl Phys 31:1359–1370
82.
go back to reference Ha S, Mieszkowski P, Skowronski M, Rowland LB (2002) Dislocation conversion in 4H silicon carbide epitaxy. J Cryst Growth 244:257–266 Ha S, Mieszkowski P, Skowronski M, Rowland LB (2002) Dislocation conversion in 4H silicon carbide epitaxy. J Cryst Growth 244:257–266
83.
go back to reference Blumenau AT, Fall CJ, Jones R, Öberg S, Frauenheim T, Briddon PR (2003) Structure and motion of basal dislocations in silicon carbide. Phys Rev B 68:174108 Blumenau AT, Fall CJ, Jones R, Öberg S, Frauenheim T, Briddon PR (2003) Structure and motion of basal dislocations in silicon carbide. Phys Rev B 68:174108
84.
go back to reference Heindl J, Strunk HP, Heydemann VD, Pensl G (1997) Micropipes: hollow tubes in silicon carbide. Phys Stat Sol (a) 162:251–262 Heindl J, Strunk HP, Heydemann VD, Pensl G (1997) Micropipes: hollow tubes in silicon carbide. Phys Stat Sol (a) 162:251–262
85.
go back to reference Neudeck PG, Powell JA (1994) Performance limiting micropipe defects in silicon carbide wafers. IEEE Electron Device Lett 15:63–65 Neudeck PG, Powell JA (1994) Performance limiting micropipe defects in silicon carbide wafers. IEEE Electron Device Lett 15:63–65
86.
go back to reference Heindl J, Dorsch W, Strunk HP, Müller G, Eckstein R, Hofmann D, Winnacker A (1998) Dislocation content of micropipes in SiC. Phys Rev Lett 80:740–741 Heindl J, Dorsch W, Strunk HP, Müller G, Eckstein R, Hofmann D, Winnacker A (1998) Dislocation content of micropipes in SiC. Phys Rev Lett 80:740–741
87.
go back to reference Pirouz P (1998) On micropipes and nanopipes in SiC and GaN. Philos Mag 78:727–736 Pirouz P (1998) On micropipes and nanopipes in SiC and GaN. Philos Mag 78:727–736
88.
go back to reference Dudley M, Huang XR, Huang W, Powell A, Wang S, Neudeck P, Skowronski M (1999) The mechanism of micropipe nucleation at inclusions in silicon carbide. Appl Phys Lett 75:784–786 Dudley M, Huang XR, Huang W, Powell A, Wang S, Neudeck P, Skowronski M (1999) The mechanism of micropipe nucleation at inclusions in silicon carbide. Appl Phys Lett 75:784–786
89.
go back to reference Huang XR, Dudley M, Vetter WM, Huang W, Wang S, Carter CH (1999) Direct evidence of micropipe-related pure superscrew dislocations in SiC. Appl Phys Lett 74:353–355 Huang XR, Dudley M, Vetter WM, Huang W, Wang S, Carter CH (1999) Direct evidence of micropipe-related pure superscrew dislocations in SiC. Appl Phys Lett 74:353–355
90.
go back to reference Stevens R (1972) Defects in silicon carbide. J Mater Sci 7:517–521 Stevens R (1972) Defects in silicon carbide. J Mater Sci 7:517–521
91.
go back to reference Koumoto K, Takeda S, Pai CH, Sato T, Yanagida H (1989) High-resolution electron microscopy observations of stacking faults in β-SiC. J Am Ceram Soc 72:1985–1987 Koumoto K, Takeda S, Pai CH, Sato T, Yanagida H (1989) High-resolution electron microscopy observations of stacking faults in β-SiC. J Am Ceram Soc 72:1985–1987
92.
go back to reference Pujar VV, Cawley JD (1995) Effects of stacking faults on the X-ray diffraction profiles of β-SiC powders. J Am Ceram Soc 78:774–782 Pujar VV, Cawley JD (1995) Effects of stacking faults on the X-ray diffraction profiles of β-SiC powders. J Am Ceram Soc 78:774–782
93.
go back to reference Hong MH, Samant AV, Pirouz P (2000) Stacking fault energy of 6H-SiC and 4H-SiC single crystals. Philos Mag 80:919–935 Hong MH, Samant AV, Pirouz P (2000) Stacking fault energy of 6H-SiC and 4H-SiC single crystals. Philos Mag 80:919–935
94.
go back to reference Liu JQ, Skowronski M, Hallin C, Söderholm R, Lendenmann H (2002) Structure of recombination-induced stacking faults in high-voltage SiC p-n junctions. Appl Phys Lett 80:749–751 Liu JQ, Skowronski M, Hallin C, Söderholm R, Lendenmann H (2002) Structure of recombination-induced stacking faults in high-voltage SiC p-n junctions. Appl Phys Lett 80:749–751
95.
go back to reference Twigg ME, Stahlbush RE, Fatemi M, Arthur SD, Fedison JB, Tucker JB, Wang S (2003) Structure of stacking faults formed during the forward bias of 4H-SiC p-i-n diodes. Appl Phys Lett 82:2410–2412 Twigg ME, Stahlbush RE, Fatemi M, Arthur SD, Fedison JB, Tucker JB, Wang S (2003) Structure of stacking faults formed during the forward bias of 4H-SiC p-i-n diodes. Appl Phys Lett 82:2410–2412
96.
go back to reference Jacobson H, Bergman JP, Hallin C, Janzén E, Tuomi T, Lendenmann H (2004) Properties and origins of different stacking faults that cause degradation in SiC PiN diodes. J Appl Phys 95:1485–1488 Jacobson H, Bergman JP, Hallin C, Janzén E, Tuomi T, Lendenmann H (2004) Properties and origins of different stacking faults that cause degradation in SiC PiN diodes. J Appl Phys 95:1485–1488
97.
go back to reference Izumi S, Tsuchida H, Kamata I, Tawara T (2005) Structural analysis and reduction of in-grown stacking faults in 4H-SiC epilayers. Appl Phys Lett 86:202108 Izumi S, Tsuchida H, Kamata I, Tawara T (2005) Structural analysis and reduction of in-grown stacking faults in 4H-SiC epilayers. Appl Phys Lett 86:202108
98.
go back to reference Fujiwara H, Kimoto T, Tojo T, Matsunami H (2005) Characterization of in-grown stacking faults in 4H-SiC (0001) epitaxial layers and its impacts on high-voltage Schottky barrier diodes. Appl Phys Lett 87:051912 Fujiwara H, Kimoto T, Tojo T, Matsunami H (2005) Characterization of in-grown stacking faults in 4H-SiC (0001) epitaxial layers and its impacts on high-voltage Schottky barrier diodes. Appl Phys Lett 87:051912
99.
go back to reference Feng G, Suda J, Kimoto T (2008) Characterization of stacking faults in 4H-SiC epilayers by room-temperature microphotoluminescence mapping. Appl Phys Lett 92:221906 Feng G, Suda J, Kimoto T (2008) Characterization of stacking faults in 4H-SiC epilayers by room-temperature microphotoluminescence mapping. Appl Phys Lett 92:221906
100.
go back to reference Liu JQ, Chung HJ, Kuhr T, Li Q, Skowronski M (2002) Structural instability of 4H–SiC polytype induced by n-type doping. Appl Phys Lett 80:2111–2113 Liu JQ, Chung HJ, Kuhr T, Li Q, Skowronski M (2002) Structural instability of 4H–SiC polytype induced by n-type doping. Appl Phys Lett 80:2111–2113
101.
go back to reference Kuhr TA, Liu JQ, Chung HJ, Skowronski M, Szmulowicz F (2002) Spontaneous formation of stacking faults in highly doped 4H–SiC during annealing. J Appl Phys 92:5863–5871 Kuhr TA, Liu JQ, Chung HJ, Skowronski M, Szmulowicz F (2002) Spontaneous formation of stacking faults in highly doped 4H–SiC during annealing. J Appl Phys 92:5863–5871
102.
go back to reference Ha S, Skowronski M, Sumakeris JJ, Paisley MJ, Das MK (2004) Driving force of stacking-fault formation in SiC p-i-n diodes. Phys Rev Lett 92:175504 Ha S, Skowronski M, Sumakeris JJ, Paisley MJ, Das MK (2004) Driving force of stacking-fault formation in SiC p-i-n diodes. Phys Rev Lett 92:175504
103.
go back to reference Galeckas A, Linnros J, Pirouz P (2006) Recombination-induced stacking faults: evidence for a general mechanism in hexagonal SiC. Phys Rev Lett 96:025502 Galeckas A, Linnros J, Pirouz P (2006) Recombination-induced stacking faults: evidence for a general mechanism in hexagonal SiC. Phys Rev Lett 96:025502
104.
go back to reference Sridhara SG, Carlsson FHC, Bergman JP, Janzén E (2001) Luminescence from stacking faults in 4H SiC. Appl Phys Lett 79:3944–3946 Sridhara SG, Carlsson FHC, Bergman JP, Janzén E (2001) Luminescence from stacking faults in 4H SiC. Appl Phys Lett 79:3944–3946
105.
go back to reference Fissel A, Kaiser U, Schröter B, Richter W, Bechstedt F (2001) MBE growth and properties of SiC multi-quantum well structures. Appl Surf Sci 184:37–42 Fissel A, Kaiser U, Schröter B, Richter W, Bechstedt F (2001) MBE growth and properties of SiC multi-quantum well structures. Appl Surf Sci 184:37–42
106.
go back to reference Bai S, Devaty RP, Choyke WJ, Kaiser U, Wagner G, MacMillan MF (2003) Determination of the electric field in 4H/3C/4H-SiC quantum wells due to spontaneous polarization in the 4H SiC matrix. Appl Phys Lett 83:3171–3173 Bai S, Devaty RP, Choyke WJ, Kaiser U, Wagner G, MacMillan MF (2003) Determination of the electric field in 4H/3C/4H-SiC quantum wells due to spontaneous polarization in the 4H SiC matrix. Appl Phys Lett 83:3171–3173
107.
go back to reference Ding Y, Park K-B, Pelz JP, Palle KC, Mikhov MK, Skromme BJ, Meidia H, Mahajan S (2004) Quantum well state of self-forming 3C-SiC inclusions in 4H SiC determined by ballistic electron emission microscopy. Phys Rev B 69:041305(R) Ding Y, Park K-B, Pelz JP, Palle KC, Mikhov MK, Skromme BJ, Meidia H, Mahajan S (2004) Quantum well state of self-forming 3C-SiC inclusions in 4H SiC determined by ballistic electron emission microscopy. Phys Rev B 69:041305(R)
108.
go back to reference Galeckas A, Hallén A, Majdi S, Linnros J, Pirouz P (2006) Combined photoluminescence-imaging and deep-level transient spectroscopy of recombination processes at stacking faults in 4H-SiC. Phys Rev B 74:233203 Galeckas A, Hallén A, Majdi S, Linnros J, Pirouz P (2006) Combined photoluminescence-imaging and deep-level transient spectroscopy of recombination processes at stacking faults in 4H-SiC. Phys Rev B 74:233203
109.
go back to reference Miao MS, Limpijumnong S, Lambrecht WRL (2001) Stacking fault band structure in 4H-SiC and its impact on electronic devices. Appl Phys Lett 79:4360–4362 Miao MS, Limpijumnong S, Lambrecht WRL (2001) Stacking fault band structure in 4H-SiC and its impact on electronic devices. Appl Phys Lett 79:4360–4362
110.
go back to reference Lambrecht WRL, Miao MS (2006) Electronic driving force for stacking fault expansion in 4H-SiC. Phys Rev B 73:155312 Lambrecht WRL, Miao MS (2006) Electronic driving force for stacking fault expansion in 4H-SiC. Phys Rev B 73:155312
111.
go back to reference Iwata H, Lindefelt U, Öberg S, Briddon PR (2001) Localized electronic states around stacking faults in silicon carbide. Phys Rev B 65:033203 Iwata H, Lindefelt U, Öberg S, Briddon PR (2001) Localized electronic states around stacking faults in silicon carbide. Phys Rev B 65:033203
112.
go back to reference Lindefelt U, Iwata H, Öberg S, Briddon PR (2003) Stacking faults in 3C-, 4H-, and 6H-SiC polytypes investigated by an ab initio supercell method. Phys Rev B 67:155204 Lindefelt U, Iwata H, Öberg S, Briddon PR (2003) Stacking faults in 3C-, 4H-, and 6H-SiC polytypes investigated by an ab initio supercell method. Phys Rev B 67:155204
113.
go back to reference Iwata H, Lindefelt U, Öberg S, Briddon PR (2003) Cubic polytype inclusions in 4H-SiC. J Appl Phys 93:1577–1585 Iwata H, Lindefelt U, Öberg S, Briddon PR (2003) Cubic polytype inclusions in 4H-SiC. J Appl Phys 93:1577–1585
114.
go back to reference Woodbury HH, Ludwig GW (1961) Electron spin resonance studies in SiC. Phys Rev 124:1083–1089 Woodbury HH, Ludwig GW (1961) Electron spin resonance studies in SiC. Phys Rev 124:1083–1089
115.
go back to reference Suttrop W, Pensl G, Choyke WJ, Stein R, Leibenzeder S (1992) Hall effect and infrared absorption measurements on nitrogen donors in 6H-silicon carbide. J Appl Phys 72:3708–3713 Suttrop W, Pensl G, Choyke WJ, Stein R, Leibenzeder S (1992) Hall effect and infrared absorption measurements on nitrogen donors in 6H-silicon carbide. J Appl Phys 72:3708–3713
116.
go back to reference Götz W, Schöner A, Pensl G, Suttrop W, Choyke WJ, Stein R, Leibenzeder S (1993) Nitrogen donors in 4H-silicon carbide. J Appl Phys 73:3332–3338 Götz W, Schöner A, Pensl G, Suttrop W, Choyke WJ, Stein R, Leibenzeder S (1993) Nitrogen donors in 4H-silicon carbide. J Appl Phys 73:3332–3338
117.
go back to reference Schneider J, Müller HD, Maier K, Wilkening W, Fuchs F, Dörnen A, Leibenzeder S, Stein R (1990) Infrared spectra and electron spin resonance of vanadium deep level impurities in silicon carbide. Appl Phys Lett 56:1184–1186 Schneider J, Müller HD, Maier K, Wilkening W, Fuchs F, Dörnen A, Leibenzeder S, Stein R (1990) Infrared spectra and electron spin resonance of vanadium deep level impurities in silicon carbide. Appl Phys Lett 56:1184–1186
118.
go back to reference Choyke WJ, Devaty RP, Clemen LL, Yoganathan M, Pensl G, Hässler Ch (1994) Intense erbium-1.54-μm photoluminescence from 2 to 525 K in ion-implanted 4H, 6H, 15R, and 3C SiC. Appl Phys Lett 65:1668–1670 Choyke WJ, Devaty RP, Clemen LL, Yoganathan M, Pensl G, Hässler Ch (1994) Intense erbium-1.54-μm photoluminescence from 2 to 525 K in ion-implanted 4H, 6H, 15R, and 3C SiC. Appl Phys Lett 65:1668–1670
119.
go back to reference Aradi B, Gali A, Deák P, Lowther JE, Son NT, Janzén E, Choyke WJ (2001) Ab initio density-functional supercell calculations of hydrogen defects in cubic SiC. Phys Rev B 63:245202 Aradi B, Gali A, Deák P, Lowther JE, Son NT, Janzén E, Choyke WJ (2001) Ab initio density-functional supercell calculations of hydrogen defects in cubic SiC. Phys Rev B 63:245202
120.
go back to reference Greulich-Weber S (1997) EPR and ENDOR investigations of shallow impurities in SiC polytypes. Phys Stat Sol (a) 162:95–151 Greulich-Weber S (1997) EPR and ENDOR investigations of shallow impurities in SiC polytypes. Phys Stat Sol (a) 162:95–151
121.
go back to reference Vetelino JF, Mitra SS (1969) Lattice dynamics of cubic SiC. Phys Rev 178:1349–1352 Vetelino JF, Mitra SS (1969) Lattice dynamics of cubic SiC. Phys Rev 178:1349–1352
122.
go back to reference Feldman DW, Parker JH, Choyke WJ, Patrick L (1968) Raman scattering in 6H SiC. Phys Rev 170:698–704 Feldman DW, Parker JH, Choyke WJ, Patrick L (1968) Raman scattering in 6H SiC. Phys Rev 170:698–704
123.
go back to reference Feldman DW, Parker JH, Choyke WJ, Patrick L (1968) Phonon dispersion curves by Raman scattering in SiC, polytypes 3C, 4H, 6H, 15R, and 21R. Phys Rev 173:787–793 Feldman DW, Parker JH, Choyke WJ, Patrick L (1968) Phonon dispersion curves by Raman scattering in SiC, polytypes 3C, 4H, 6H, 15R, and 21R. Phys Rev 173:787–793
124.
go back to reference Hofmann M, Zywietz A, Karch K, Bechstedt F (1994) Lattice dynamics of SiC polytypes within the bond-charge model. Phys Rev B 50:13401–13411 Hofmann M, Zywietz A, Karch K, Bechstedt F (1994) Lattice dynamics of SiC polytypes within the bond-charge model. Phys Rev B 50:13401–13411
125.
go back to reference Karch K, Pavone P, Windl W, Schütt O, Strauch D (1994) Ab initio calculation of structural and lattice-dynamical properties of silicon carbide. Phys Rev B 50:17054–17063 Karch K, Pavone P, Windl W, Schütt O, Strauch D (1994) Ab initio calculation of structural and lattice-dynamical properties of silicon carbide. Phys Rev B 50:17054–17063
126.
go back to reference Spitzer WG, Kleinman D, Walsh D (1959) Infrared properties of hexagonal silicon carbide. Phys Rev 113:127–132 Spitzer WG, Kleinman D, Walsh D (1959) Infrared properties of hexagonal silicon carbide. Phys Rev 113:127–132
127.
go back to reference Spitzer WG, Kleinman DA, Frosch CJ (1959) Infrared properties of cubic silicon carbide films. Phys Rev 113:133–136 Spitzer WG, Kleinman DA, Frosch CJ (1959) Infrared properties of cubic silicon carbide films. Phys Rev 113:133–136
128.
go back to reference Patrick L, Choyke WJ (1961) Lattice absorption bands in SiC. Phys Rev 123:813–815 Patrick L, Choyke WJ (1961) Lattice absorption bands in SiC. Phys Rev 123:813–815
129.
go back to reference Holm RT, Klein PH, Nordquist PER (1986) Infrared reflectance evaluation of chemically vapor deposited β-SiC films grown on Si substrates. J Appl Phys 60:1479–1485 Holm RT, Klein PH, Nordquist PER (1986) Infrared reflectance evaluation of chemically vapor deposited β-SiC films grown on Si substrates. J Appl Phys 60:1479–1485
130.
go back to reference Engelbrecht F, Helbig R (1993) Effect of crystal anisotropy on the infrared reflectivity of 6H-SiC. Phys Rev B 48:15698–15707 Engelbrecht F, Helbig R (1993) Effect of crystal anisotropy on the infrared reflectivity of 6H-SiC. Phys Rev B 48:15698–15707
131.
go back to reference Tiwald TE, Woollam JA, Zollner S, Christiansen J, Gregory RB, Wetteroth T, Wilson SR, Powell AR (1999) Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry. Phys Rev B 60:11464–11474 Tiwald TE, Woollam JA, Zollner S, Christiansen J, Gregory RB, Wetteroth T, Wilson SR, Powell AR (1999) Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry. Phys Rev B 60:11464–11474
132.
go back to reference Nakashima S, Katahama H, Nakakura Y, Mitsuishi A (1986) Relative Raman intensities of the folded modes in SiC polytypes. Phys Rev B 33:5721–5729 Nakashima S, Katahama H, Nakakura Y, Mitsuishi A (1986) Relative Raman intensities of the folded modes in SiC polytypes. Phys Rev B 33:5721–5729
133.
go back to reference Okumura H, Sakuma E, Lee JH, Mukaida H, Misawa S, Endo K, Yoshida S (1987) Raman scattering of SiC: application to the identification of heteroepitaxy of SiC polytypes. J Appl Phys 61:1134–1136 Okumura H, Sakuma E, Lee JH, Mukaida H, Misawa S, Endo K, Yoshida S (1987) Raman scattering of SiC: application to the identification of heteroepitaxy of SiC polytypes. J Appl Phys 61:1134–1136
134.
go back to reference Nakashima S, Tahara K (1989) Raman scattering determination of structures for SiC polytypes: quantitative evaluation with a revised model of lattice dynamics. Phys Rev B 40:6339–6344 Nakashima S, Tahara K (1989) Raman scattering determination of structures for SiC polytypes: quantitative evaluation with a revised model of lattice dynamics. Phys Rev B 40:6339–6344
135.
go back to reference Burton JC, Sun L, Long FH, Feng ZC, Ferguson IT (1999) First- and second-order Raman scattering from semi-insulating 4H-SiC. Phys Rev B 59:7282–7284 Burton JC, Sun L, Long FH, Feng ZC, Ferguson IT (1999) First- and second-order Raman scattering from semi-insulating 4H-SiC. Phys Rev B 59:7282–7284
136.
go back to reference Olego D, Cardona M, Vogl P (1982) Pressure dependence of the optical phonons and transverse effective charge in 3C-SiC. Phys Rev B 25:3878–3888 Olego D, Cardona M, Vogl P (1982) Pressure dependence of the optical phonons and transverse effective charge in 3C-SiC. Phys Rev B 25:3878–3888
137.
go back to reference Olego D, Cardona M (1982) Pressure dependence of Raman phonons of Ge and 3C-SiC. Phys Rev B 25:1151–1160 Olego D, Cardona M (1982) Pressure dependence of Raman phonons of Ge and 3C-SiC. Phys Rev B 25:1151–1160
138.
go back to reference Debernardi A, Ulrich C, Syassen K, Cardona M (1999) Raman linewidths of optical phonons in 3C-SiC under pressure: first-principles calculations and experimental results. Phys Rev B 59:6774–6783 Debernardi A, Ulrich C, Syassen K, Cardona M (1999) Raman linewidths of optical phonons in 3C-SiC under pressure: first-principles calculations and experimental results. Phys Rev B 59:6774–6783
139.
go back to reference Liu J, Vohra YK (1994) Raman modes of 6H polytype of silicon carbide to ultrahigh pressures: a comparison with silicon and diamond. Phys Rev Lett 72:4105–4108 Liu J, Vohra YK (1994) Raman modes of 6H polytype of silicon carbide to ultrahigh pressures: a comparison with silicon and diamond. Phys Rev Lett 72:4105–4108
140.
go back to reference Olego D, Cardona M (1982) Temperature dependence of the optical phonons and transverse effective charge in 3C-SiC. Phys Rev B 25:3889–3896 Olego D, Cardona M (1982) Temperature dependence of the optical phonons and transverse effective charge in 3C-SiC. Phys Rev B 25:3889–3896
141.
go back to reference Rohmfeld S, Hundhausen M, Ley L (1998) Raman scattering in polycrystalline 3C-SiC: influence of stacking faults. Phys Rev B 58:9858–9862 Rohmfeld S, Hundhausen M, Ley L (1998) Raman scattering in polycrystalline 3C-SiC: influence of stacking faults. Phys Rev B 58:9858–9862
142.
go back to reference Colwell PJ, Klein MV (1972) Raman scattering from electronic excitations in n-type silicon carbide. Phys Rev B 6:498–515 Colwell PJ, Klein MV (1972) Raman scattering from electronic excitations in n-type silicon carbide. Phys Rev B 6:498–515
143.
go back to reference Klein MV, Ganguly BN, Colwell PJ (1972) Theoretical and experimental study of Raman scattering from coupled LO-phonon-plasmon modes in silicon carbide. Phys Rev B 6:2380–2388 Klein MV, Ganguly BN, Colwell PJ (1972) Theoretical and experimental study of Raman scattering from coupled LO-phonon-plasmon modes in silicon carbide. Phys Rev B 6:2380–2388
144.
go back to reference Harima H, Nakashima S, Uemura T (1995) Raman scattering from anisotropic LO-phonon-plasmon-coupled mode in n-type 4H- and 6H-SiC. J Appl Phys 78:1996–2005 Harima H, Nakashima S, Uemura T (1995) Raman scattering from anisotropic LO-phonon-plasmon-coupled mode in n-type 4H- and 6H-SiC. J Appl Phys 78:1996–2005
145.
go back to reference Burton JC, Sun L, Pophristic M, Lukacs SJ, Long FH, Feng ZC, Ferguson IT (1998) Spatial characterization of doped SiC wafers by Raman spectroscopy. J Appl Phys 84:6268–6273 Burton JC, Sun L, Pophristic M, Lukacs SJ, Long FH, Feng ZC, Ferguson IT (1998) Spatial characterization of doped SiC wafers by Raman spectroscopy. J Appl Phys 84:6268–6273
146.
go back to reference Choyke WJ, Patrick L (1957) Absorption of light in alpha SiC near the band edge. Phys Rev 105:1721–1723 Choyke WJ, Patrick L (1957) Absorption of light in alpha SiC near the band edge. Phys Rev 105:1721–1723
147.
go back to reference Choyke WJ, Patrick L (1968) Higher Absorption Edges in 6H-SiC. Phys Rev 172:769–772 Choyke WJ, Patrick L (1968) Higher Absorption Edges in 6H-SiC. Phys Rev 172:769–772
148.
go back to reference Sridhara SG, Devaty RP, Choyke WJ (1998) Absorption coefficient of 4H silicon carbide from 3900 to 3250 Å. J Appl Phys 84:2963–2964 Sridhara SG, Devaty RP, Choyke WJ (1998) Absorption coefficient of 4H silicon carbide from 3900 to 3250 Å. J Appl Phys 84:2963–2964
149.
go back to reference Sridhara SG, Eperjesi TJ, Devaty RP, Choyke WJ (1999) Penetration depths in the ultraviolet for 4H, 6H and 3C silicon carbide at seven common laser pumping wavelengths. Mater Sci Eng B 61–62:229–233 Sridhara SG, Eperjesi TJ, Devaty RP, Choyke WJ (1999) Penetration depths in the ultraviolet for 4H, 6H and 3C silicon carbide at seven common laser pumping wavelengths. Mater Sci Eng B 61–62:229–233
150.
go back to reference Choyke WJ, Patrick L (1970) Luminescence of donor-acceptor pairs in cubic SiC. Phys Rev B 2:4959–4965 Choyke WJ, Patrick L (1970) Luminescence of donor-acceptor pairs in cubic SiC. Phys Rev B 2:4959–4965
151.
go back to reference Hopfield JJ, Thomas DG, Gershenzon M (1963) Pair spectra in GaP. Phys Rev Lett 10:162–164 Hopfield JJ, Thomas DG, Gershenzon M (1963) Pair spectra in GaP. Phys Rev Lett 10:162–164
152.
go back to reference Suzuki A, Matsunami H, Tanaka T (1977) Photoluminescence due to Al, Ga, and B acceptors in 4H-, 6H-, and 3C-SiC grown from a Si melt. J Electrochem Soc 124:241–246 Suzuki A, Matsunami H, Tanaka T (1977) Photoluminescence due to Al, Ga, and B acceptors in 4H-, 6H-, and 3C-SiC grown from a Si melt. J Electrochem Soc 124:241–246
153.
go back to reference Ikeda M, Matsunami H, Tanaka T (1980) Site effect on the impurity levels in 4H, 6H, and 15R SiC. Phys Rev B 22:2842–2854 Ikeda M, Matsunami H, Tanaka T (1980) Site effect on the impurity levels in 4H, 6H, and 15R SiC. Phys Rev B 22:2842–2854
154.
go back to reference Hagen SH, Van Kemenade AWC, van der Does de Bye JAW (1973) Donor-acceptor pair spectra in 6H and 4H SiC doped with nitrogen and aluminium. J Lumin 8:18–31 Hagen SH, Van Kemenade AWC, van der Does de Bye JAW (1973) Donor-acceptor pair spectra in 6H and 4H SiC doped with nitrogen and aluminium. J Lumin 8:18–31
155.
go back to reference Kamiyama S, Maeda T, Nakamura Y, Iwaya M, Amano H, Akasaki I, Kinoshita H, Furusho T, Yoshimoto M, Kimoto T, Suda J, Henry A, Ivanov IG, Bergman JP, Monemar B, Onuma T, Chichibu SF (2006) Extremely high quantum efficiency of donor-acceptor-pair emission in N-and-B-doped 6H-SiC. J Appl Phys 99:093108 Kamiyama S, Maeda T, Nakamura Y, Iwaya M, Amano H, Akasaki I, Kinoshita H, Furusho T, Yoshimoto M, Kimoto T, Suda J, Henry A, Ivanov IG, Bergman JP, Monemar B, Onuma T, Chichibu SF (2006) Extremely high quantum efficiency of donor-acceptor-pair emission in N-and-B-doped 6H-SiC. J Appl Phys 99:093108
156.
go back to reference Ou Y, Jokubavicius V, Kamiyama S, Liu C, Berg RW, Linnarsson M, Yakimova R, Syväjärvi M, Ou H (2011) Donor-acceptor-pair emission characterization in N-B doped fluorescent SiC. Optic Mater Exp 1:1439–1446 Ou Y, Jokubavicius V, Kamiyama S, Liu C, Berg RW, Linnarsson M, Yakimova R, Syväjärvi M, Ou H (2011) Donor-acceptor-pair emission characterization in N-B doped fluorescent SiC. Optic Mater Exp 1:1439–1446
157.
go back to reference Lampert MA (1958) Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys Rev Lett 1:450–453 Lampert MA (1958) Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys Rev Lett 1:450–453
158.
go back to reference Haynes JR (1960) Experimental proof of the existence of a new electronic complex in silicon. Phys Rev Lett 4:361–363 Haynes JR (1960) Experimental proof of the existence of a new electronic complex in silicon. Phys Rev Lett 4:361–363
159.
go back to reference Choyke WJ, Patrick L (1962) Exciton recombination radiation and phonon spectrum of 6H SiC. Phys Rev 127:1868–1877 Choyke WJ, Patrick L (1962) Exciton recombination radiation and phonon spectrum of 6H SiC. Phys Rev 127:1868–1877
160.
go back to reference Hamilton DR, Choyke WJ, Patrick L (1963) Photoluminescence of nitrogen-exciton complexes in 6H SiC. Phys Rev 131:127–133 Hamilton DR, Choyke WJ, Patrick L (1963) Photoluminescence of nitrogen-exciton complexes in 6H SiC. Phys Rev 131:127–133
161.
go back to reference Patrick L, Hamilton DR, Choyke WJ (1963) Optical properties of 15R SiC: luminescence of nitrogen-exciton complexes, and interband absorption. Phys Rev 132:2023–2031 Patrick L, Hamilton DR, Choyke WJ (1963) Optical properties of 15R SiC: luminescence of nitrogen-exciton complexes, and interband absorption. Phys Rev 132:2023–2031
162.
go back to reference Patrick L, Choyke WJ, Hamilton DR (1965) Luminescence of 4H SiC, and location of conduction-band minima in SiC polytypes. Phys Rev 137:A1515–A1520 Patrick L, Choyke WJ, Hamilton DR (1965) Luminescence of 4H SiC, and location of conduction-band minima in SiC polytypes. Phys Rev 137:A1515–A1520
163.
go back to reference Patrick L, Hamilton DR, Choyke WJ (1966) Growth, luminescence, selection rules, and lattice sums of SiC with wurtzite structure. Phys Rev 143:526–536 Patrick L, Hamilton DR, Choyke WJ (1966) Growth, luminescence, selection rules, and lattice sums of SiC with wurtzite structure. Phys Rev 143:526–536
164.
go back to reference Ivanov IG, Hallin C, Henry A, Kordina O, Janzén E (1996) Nitrogen doping concentration as determined by photoluminescence in 4H- and 6H-SiC. J Appl Phys 80:3504–3508 Ivanov IG, Hallin C, Henry A, Kordina O, Janzén E (1996) Nitrogen doping concentration as determined by photoluminescence in 4H- and 6H-SiC. J Appl Phys 80:3504–3508
165.
go back to reference Dean PJ, Herbert DC, Bimberg D, Choyke WJ (1976) Donor exciton satellites in cubic silicon carbide: multiple bound excitons revisited. Phys Rev Lett 37:1635–1638 Dean PJ, Herbert DC, Bimberg D, Choyke WJ (1976) Donor exciton satellites in cubic silicon carbide: multiple bound excitons revisited. Phys Rev Lett 37:1635–1638
166.
go back to reference Kuwabara H, Yamada S (1975) Free-to-bound transition in β-SiC doped with boron. Phys Stat Sol (a) 30:739–746 Kuwabara H, Yamada S (1975) Free-to-bound transition in β-SiC doped with boron. Phys Stat Sol (a) 30:739–746
167.
go back to reference Clemen LL, Devaty RP, MacMillan MF, Yoganathan M, Choyke WJ, Larkin DJ, Powell JA, Edmond JA, Kong HS (1993) Aluminum acceptor four particle bound exciton complex in 4H, 6H, and 3C SiC. Appl Phys Lett 62:2953–2955 Clemen LL, Devaty RP, MacMillan MF, Yoganathan M, Choyke WJ, Larkin DJ, Powell JA, Edmond JA, Kong HS (1993) Aluminum acceptor four particle bound exciton complex in 4H, 6H, and 3C SiC. Appl Phys Lett 62:2953–2955
168.
go back to reference Sridhara SG, Clemen LL, Devaty RP, Choyke WJ, Larkin DJ, Kong HS, Troffer T, Pensl G (1998) Photoluminescence and transport studies of boron in 4H SiC. J Appl Phys 83:7909–7919 Sridhara SG, Clemen LL, Devaty RP, Choyke WJ, Larkin DJ, Kong HS, Troffer T, Pensl G (1998) Photoluminescence and transport studies of boron in 4H SiC. J Appl Phys 83:7909–7919
169.
go back to reference Egilsson T, Bergman JP, Ivanov IG, Henry A, Janzén E (1999) Properties of the D 1 bound exciton in 4H-SiC. Phys Rev B 59:1956–1963 Egilsson T, Bergman JP, Ivanov IG, Henry A, Janzén E (1999) Properties of the D 1 bound exciton in 4H-SiC. Phys Rev B 59:1956–1963
170.
go back to reference Lüth H (2010) Solid surfaces, interfaces and thin films, 5th edn. Springer, Berlin Lüth H (2010) Solid surfaces, interfaces and thin films, 5th edn. Springer, Berlin
171.
go back to reference Hara S, Misawa S, Yoshida S, Aoyagi Y (1994) Additional dimer-row structure of 3C-SiC(001) surfaces observed by scanning tunneling microscopy. Phys Rev B 50:4548–4553 Hara S, Misawa S, Yoshida S, Aoyagi Y (1994) Additional dimer-row structure of 3C-SiC(001) surfaces observed by scanning tunneling microscopy. Phys Rev B 50:4548–4553
172.
go back to reference Semond F, Soukiassian P, Mayne A, Dujardin G, Douillard L, Jaussaud C (1996) Atomic structure of the β-SiC(100)-(3 × 2) surface. Phys Rev Lett 77:2013–2016 Semond F, Soukiassian P, Mayne A, Dujardin G, Douillard L, Jaussaud C (1996) Atomic structure of the β-SiC(100)-(3 × 2) surface. Phys Rev Lett 77:2013–2016
173.
go back to reference Sabisch M, Krüger P, Mazur A, Rohlfing M, Pollmann J (1996) First-principles calculations of β-SiC(001) surfaces. Phys Rev B 53:13121–13132 Sabisch M, Krüger P, Mazur A, Rohlfing M, Pollmann J (1996) First-principles calculations of β-SiC(001) surfaces. Phys Rev B 53:13121–13132
174.
go back to reference Soukiassian P, Semond F, Douillard L, Mayne A, Dujardin G, Pizzagalli L, Joachim C (1997) Direct observation of a β-SiC(100)-c(4 × 2) surface reconstruction. Phys Rev Lett 78:907–910 Soukiassian P, Semond F, Douillard L, Mayne A, Dujardin G, Pizzagalli L, Joachim C (1997) Direct observation of a β-SiC(100)-c(4 × 2) surface reconstruction. Phys Rev Lett 78:907–910
175.
go back to reference Soukiassian P, Semond F, Mayne A, Dujardin G (1997) Highly stable Si atomic line formation on the β-SiC(100) surface. Phys Rev Lett 79:2498–2501 Soukiassian P, Semond F, Mayne A, Dujardin G (1997) Highly stable Si atomic line formation on the β-SiC(100) surface. Phys Rev Lett 79:2498–2501
176.
go back to reference Derycke V, Soukiassian P, Mayne A, Dujardin G, Gautier J (1998) Carbon atomic chain formation on the β-SiC(100) surface by controlled sp → sp3 transformation. Phys Rev Lett 81:5868–5871 Derycke V, Soukiassian P, Mayne A, Dujardin G, Gautier J (1998) Carbon atomic chain formation on the β-SiC(100) surface by controlled sp → sp3 transformation. Phys Rev Lett 81:5868–5871
177.
go back to reference Powers JM, Wander A, Rous PJ, Van Hove MA, Somorjai GA (1991) Structural analysis of the β-SiC(100)-c(2 × 2) surface reconstruction by automated tensor low-energy electron diffraction. Phys Rev B 44:11159–11166 Powers JM, Wander A, Rous PJ, Van Hove MA, Somorjai GA (1991) Structural analysis of the β-SiC(100)-c(2 × 2) surface reconstruction by automated tensor low-energy electron diffraction. Phys Rev B 44:11159–11166
178.
go back to reference Yan H, Smith AP, Jónsson H (1995) Atomic structure of β-SiC(100) surfaces: an ab initio study. Surf Sci 330:265–275 Yan H, Smith AP, Jónsson H (1995) Atomic structure of β-SiC(100) surfaces: an ab initio study. Surf Sci 330:265–275
179.
go back to reference Long JP, Bermudez VM, Ramaker DE (1996) Structural determination of β-SiC(100)-c(2 × 2) from C-1s surface-core-exciton and Si-2p absorption. Phys Rev Lett 76:991–994 Long JP, Bermudez VM, Ramaker DE (1996) Structural determination of β-SiC(100)-c(2 × 2) from C-1s surface-core-exciton and Si-2p absorption. Phys Rev Lett 76:991–994
180.
go back to reference Catellani A, Galli G, Gygi F (1996) Reconstruction and thermal stability of the cubic SiC (001) surfaces. Phys Rev Lett 77:5090–5093 Catellani A, Galli G, Gygi F (1996) Reconstruction and thermal stability of the cubic SiC (001) surfaces. Phys Rev Lett 77:5090–5093
181.
go back to reference Yeom HW, Shimomura M, Kitamura J, Hara S, Tono K, Matsuda I, Mun BS, Huff WAR, Kono S, Ohta T, Yoshida S, Okushi H, Kajimura K, Fadley CS (1999) Atomic and electronic-band structures of anomalous carbon dimers on 3C-SiC(001)-c(2 × 2). Phys Rev Lett 83:1640–1643 Yeom HW, Shimomura M, Kitamura J, Hara S, Tono K, Matsuda I, Mun BS, Huff WAR, Kono S, Ohta T, Yoshida S, Okushi H, Kajimura K, Fadley CS (1999) Atomic and electronic-band structures of anomalous carbon dimers on 3C-SiC(001)-c(2 × 2). Phys Rev Lett 83:1640–1643
182.
go back to reference Starke U, Schardt J, Bernhardt J, Franke M, Reuter K, Wedler H, Heinz K, Furthmüller J, Käckell P, Bechstedt F (1998) Novel reconstruction mechanism for dangling-bond minimization: combined method surface structure determination of SiC(111)-(3 × 3). Phys Rev Lett 80:758–761 Starke U, Schardt J, Bernhardt J, Franke M, Reuter K, Wedler H, Heinz K, Furthmüller J, Käckell P, Bechstedt F (1998) Novel reconstruction mechanism for dangling-bond minimization: combined method surface structure determination of SiC(111)-(3 × 3). Phys Rev Lett 80:758–761
183.
go back to reference Schardt J, Bernhardt J, Starke U, Heinz K (2000) Crystallography of the (3 × 3) surface reconstruction of 3C-SiC(111), 4H-SiC(0001), and 6H-SiC(0001) surfaces retrieved by low-energy electron diffraction. Phys Rev B 62:10335–10344 Schardt J, Bernhardt J, Starke U, Heinz K (2000) Crystallography of the (3 × 3) surface reconstruction of 3C-SiC(111), 4H-SiC(0001), and 6H-SiC(0001) surfaces retrieved by low-energy electron diffraction. Phys Rev B 62:10335–10344
184.
go back to reference Kulakov MA, Henn G, Bullemer B (1996) SiC(0001)3 × 3-Si surface reconstruction—a new insight with a STM. Surf Sci 346:49–54 Kulakov MA, Henn G, Bullemer B (1996) SiC(0001)3 × 3-Si surface reconstruction—a new insight with a STM. Surf Sci 346:49–54
185.
go back to reference Li L, Tsong IST (1996) Atomic structures of 6H-SiC (0001) and \( (000\bar{1}) \) surfaces. Surf Sci 351:141–148 Li L, Tsong IST (1996) Atomic structures of 6H-SiC (0001) and \( (000\bar{1}) \) surfaces. Surf Sci 351:141–148
186.
go back to reference Starke U, Bram Ch, Steiner P-R, Hartner W, Hammer L, Heinz K, Müller K (1995) The (0001)-surface of 6H-SiC: morphology, composition and structure. Appl Surf Sci 89:175–185 Starke U, Bram Ch, Steiner P-R, Hartner W, Hammer L, Heinz K, Müller K (1995) The (0001)-surface of 6H-SiC: morphology, composition and structure. Appl Surf Sci 89:175–185
187.
go back to reference Owman F, Mårtensson P (1995) STM study of the SiC(0001) \( \sqrt 3 \times \sqrt 3 \) surface. Surf Sci 330:L639–L645 Owman F, Mårtensson P (1995) STM study of the SiC(0001) \( \sqrt 3 \times \sqrt 3 \) surface. Surf Sci 330:L639–L645
188.
go back to reference Northrup JE, Neugebauer J (1995) Theory of the adatom-induced reconstruction of the SiC(0001) \( \sqrt 3 \times \sqrt 3 \) surface. Phys Rev B 52:R17001–R17004 Northrup JE, Neugebauer J (1995) Theory of the adatom-induced reconstruction of the SiC(0001) \( \sqrt 3 \times \sqrt 3 \) surface. Phys Rev B 52:R17001–R17004
189.
go back to reference Johansson LI, Owman F, Mårtensson P (1996) Surface state on the SiC(0001)-(\( \sqrt 3 \times \sqrt 3 \)) surface. Surf Sci 360:L478–L482 Johansson LI, Owman F, Mårtensson P (1996) Surface state on the SiC(0001)-(\( \sqrt 3 \times \sqrt 3 \)) surface. Surf Sci 360:L478–L482
190.
go back to reference Johansson LI, Owman F, Mårtensson P (1996) High-resolution core-level study of 6H-SiC(0001). Phys Rev B 53:13793–13802 Johansson LI, Owman F, Mårtensson P (1996) High-resolution core-level study of 6H-SiC(0001). Phys Rev B 53:13793–13802
191.
go back to reference Sabisch M, Krüger P, Pollmann J (1997) Ab initio calculations of structural and electronic properties of 6H-SiC(0001) surfaces. Phys Rev B 55:10561–10570 Sabisch M, Krüger P, Pollmann J (1997) Ab initio calculations of structural and electronic properties of 6H-SiC(0001) surfaces. Phys Rev B 55:10561–10570
192.
go back to reference Ramachandran V, Feenstra RM (1999) Scanning tunneling spectroscopy of Mott-Hubbard states on the 6H-SiC(0001) \( \sqrt 3 \times \sqrt 3 \) Surface. Phys Rev Lett 82:1000–1003 Ramachandran V, Feenstra RM (1999) Scanning tunneling spectroscopy of Mott-Hubbard states on the 6H-SiC(0001) \( \sqrt 3 \times \sqrt 3 \) Surface. Phys Rev Lett 82:1000–1003
193.
go back to reference Hornetz B, Michel H-J, Halbritter J (1994) ARXPS studies of SiO2–SiC interfaces and oxidation of 6H SiC single crystal Si-(001) and C–\((00\bar{1}) \) surfaces. J Mater Res 9:3088–3094 Hornetz B, Michel H-J, Halbritter J (1994) ARXPS studies of SiO2–SiC interfaces and oxidation of 6H SiC single crystal Si-(001) and C–\((00\bar{1}) \) surfaces. J Mater Res 9:3088–3094
194.
go back to reference Afanas’ev VV, Bassler M, Pensl G, Schulz MJ, von Kamienski ES (1996) Band offsets and electronic structure of SiC/SiO2 interfaces. J Appl Phys 79:3108–3114 Afanas’ev VV, Bassler M, Pensl G, Schulz MJ, von Kamienski ES (1996) Band offsets and electronic structure of SiC/SiO2 interfaces. J Appl Phys 79:3108–3114
195.
go back to reference Afanas’ev VV, Bassler M, Pensl G, Schulz M (1997) Intrinsic SiC/SiO2 interface states. Phys Stat Sol (a) 162:321–337 Afanas’ev VV, Bassler M, Pensl G, Schulz M (1997) Intrinsic SiC/SiO2 interface states. Phys Stat Sol (a) 162:321–337
196.
go back to reference Afanas’ev VV, Stesmans A, Bassler M, Pensl G, Schulz MJ (2000) Shallow electron traps at the 4H–SiC/SiO2 interface. Appl Phys Lett 76:336–337 Afanas’ev VV, Stesmans A, Bassler M, Pensl G, Schulz MJ (2000) Shallow electron traps at the 4H–SiC/SiO2 interface. Appl Phys Lett 76:336–337
197.
go back to reference Chang KC, Nuhfer NT, Porter LM, Wahab Q (2000) High-carbon concentrations at the silicon dioxide-silicon carbide interface identified by electron energy loss spectroscopy. Appl Phys Lett 77:2186–2188 Chang KC, Nuhfer NT, Porter LM, Wahab Q (2000) High-carbon concentrations at the silicon dioxide-silicon carbide interface identified by electron energy loss spectroscopy. Appl Phys Lett 77:2186–2188
198.
go back to reference Knaup JM, Deák P, Frauenheim T, Gali A, Hajnal Z, Choyke WJ (2005) Theoretical study of the mechanism of dry oxidation of 4H-SiC. Phys Rev B 71:235321 Knaup JM, Deák P, Frauenheim T, Gali A, Hajnal Z, Choyke WJ (2005) Theoretical study of the mechanism of dry oxidation of 4H-SiC. Phys Rev B 71:235321
199.
go back to reference Pippel E, Woltersdorf J, Ólafsson HÖ, Sveinbjörnsson EÖ (2005) Interfaces between 4H-SiC and SiO2: microstructure, nanochemistry, and near-interface traps. J Appl Phys 97:034302 Pippel E, Woltersdorf J, Ólafsson HÖ, Sveinbjörnsson EÖ (2005) Interfaces between 4H-SiC and SiO2: microstructure, nanochemistry, and near-interface traps. J Appl Phys 97:034302
200.
go back to reference Knaup JM, Deák P, Frauenheim Th, Gali A, Hajnal Z, Choyke WJ (2005) Defects in SiO2 as the possible origin of near interface traps in the SiC/SiO2 system: a systematic theoretical study. Phys Rev B 72:115323 Knaup JM, Deák P, Frauenheim Th, Gali A, Hajnal Z, Choyke WJ (2005) Defects in SiO2 as the possible origin of near interface traps in the SiC/SiO2 system: a systematic theoretical study. Phys Rev B 72:115323
201.
go back to reference Zheleva T, Lelis A, Duscher G, Liu F, Levin I, Das M (2008) Transition layers at the SiO2/SiC interface. Appl Phys Lett 93:022108 Zheleva T, Lelis A, Duscher G, Liu F, Levin I, Das M (2008) Transition layers at the SiO2/SiC interface. Appl Phys Lett 93:022108
202.
go back to reference Afanas’ev VV, Stesmans A, Bassler M, Pensl G, Schulz MJ, Harris CI (1996) Elimination of SiC/SiO2 interface states by preoxidation ultraviolet-ozone cleaning. Appl Phys Lett 68:2141–2143 Afanas’ev VV, Stesmans A, Bassler M, Pensl G, Schulz MJ, Harris CI (1996) Elimination of SiC/SiO2 interface states by preoxidation ultraviolet-ozone cleaning. Appl Phys Lett 68:2141–2143
203.
go back to reference Afanas’ev VV, Stesmans A, Ciobanu F, Pensl G, Cheong KY, Dimitrijev S (2003) Mechanisms responsible for improvement of 4H-SiC/SiO2 interface properties by nitridation. Appl Phys Lett 82:568–570 Afanas’ev VV, Stesmans A, Ciobanu F, Pensl G, Cheong KY, Dimitrijev S (2003) Mechanisms responsible for improvement of 4H-SiC/SiO2 interface properties by nitridation. Appl Phys Lett 82:568–570
204.
go back to reference McDonald K, Weller RA, Pantelides ST, Feldman LC, Chung GY, Tin CC, Williams JR (2003) Characterization and modeling of the nitrogen passivation of interface traps in SiO2/4H-SiC. J Appl Phys 93:2719–2722 McDonald K, Weller RA, Pantelides ST, Feldman LC, Chung GY, Tin CC, Williams JR (2003) Characterization and modeling of the nitrogen passivation of interface traps in SiO2/4H-SiC. J Appl Phys 93:2719–2722
205.
go back to reference Wang S, Dhar S, Wang S, Ahyi AC, Franceschetti A, Williams JR, Feldman LC, Pantelides ST (2007) Bonding at the SiC–SiO2 interface and the effects of nitrogen and hydrogen. Phys Rev Lett 98:026101 Wang S, Dhar S, Wang S, Ahyi AC, Franceschetti A, Williams JR, Feldman LC, Pantelides ST (2007) Bonding at the SiC–SiO2 interface and the effects of nitrogen and hydrogen. Phys Rev Lett 98:026101
206.
go back to reference Deák P, Knaup JM, Hornos T, Thill C, Gali A, Frauenheim T (2007) The mechanism of defect creation and passivation at the SiC/SiO2 interface. J Phys D: Appl Phys 40:6242–6253 Deák P, Knaup JM, Hornos T, Thill C, Gali A, Frauenheim T (2007) The mechanism of defect creation and passivation at the SiC/SiO2 interface. J Phys D: Appl Phys 40:6242–6253
207.
go back to reference Saks NS, Mani SS, Agarwal AK (2000) Interface trap profile near the band edges at the 4H-SiC/SiO2 interface. Appl Phys Lett 76:2250–2252 Saks NS, Mani SS, Agarwal AK (2000) Interface trap profile near the band edges at the 4H-SiC/SiO2 interface. Appl Phys Lett 76:2250–2252
208.
go back to reference Bernhardt J, Schardt J, Starke U, Heinz K (1999) Epitaxially ideal oxide-semiconductor interfaces: silicate adlayers on hexagonal (0001) and \( (000\bar{1}) \) SiC surfaces. Appl Phys Lett 74:1084–1086 Bernhardt J, Schardt J, Starke U, Heinz K (1999) Epitaxially ideal oxide-semiconductor interfaces: silicate adlayers on hexagonal (0001) and \( (000\bar{1}) \) SiC surfaces. Appl Phys Lett 74:1084–1086
209.
go back to reference Ramachandran V, Brady MF, Smith AR, Feenstra RM, Greve DW (1998) Preparation of atomically flat surfaces on silicon carbide using hydrogen etching. J Electron Mater 27:308–312 Ramachandran V, Brady MF, Smith AR, Feenstra RM, Greve DW (1998) Preparation of atomically flat surfaces on silicon carbide using hydrogen etching. J Electron Mater 27:308–312
210.
go back to reference Sieber N, Mantel BF, Seyller Th, Ristein J, Ley L, Heller T, Batchelor DR, Schmeißer D (2001) Electronic and chemical passivation of hexagonal 6H-SiC surfaces by hydrogen termination. Appl Phys Lett 78:1216–1218 Sieber N, Mantel BF, Seyller Th, Ristein J, Ley L, Heller T, Batchelor DR, Schmeißer D (2001) Electronic and chemical passivation of hexagonal 6H-SiC surfaces by hydrogen termination. Appl Phys Lett 78:1216–1218
211.
go back to reference Derycke V, Soukiassian PG, Amy F, Chabal YJ, D’angelo MD, Enriquez HB, Silly MG (2003) Nanochemistry at the atomic scale revealed in hydrogen-induced semiconductor surface metallization. Nat Mater 2:253–258 Derycke V, Soukiassian PG, Amy F, Chabal YJ, D’angelo MD, Enriquez HB, Silly MG (2003) Nanochemistry at the atomic scale revealed in hydrogen-induced semiconductor surface metallization. Nat Mater 2:253–258
212.
go back to reference Cicero G, Catellani A, Galli G (2004) Atomic control of water interaction with biocompatible surfaces: the case of SiC(001). Phys Rev Lett 93:016102 Cicero G, Catellani A, Galli G (2004) Atomic control of water interaction with biocompatible surfaces: the case of SiC(001). Phys Rev Lett 93:016102
213.
go back to reference Rosso M, Arafat A, Schroën K, Giesbers M, Roper CS, Maboudian R, Zuilhof H (2008) Covalent attachment of organic monolayers to silicon carbide surfaces. Langmuir 24:4007–4012 Rosso M, Arafat A, Schroën K, Giesbers M, Roper CS, Maboudian R, Zuilhof H (2008) Covalent attachment of organic monolayers to silicon carbide surfaces. Langmuir 24:4007–4012
214.
go back to reference Rosso M, Giesbers M, Arafat A, Schroën K, Zuilhof H (2009) Covalently attached organic monolayers on SiC and SixN4 surfaces: formation using UV light at room temperature. Langmuir 25:2172–2180 Rosso M, Giesbers M, Arafat A, Schroën K, Zuilhof H (2009) Covalently attached organic monolayers on SiC and SixN4 surfaces: formation using UV light at room temperature. Langmuir 25:2172–2180
215.
go back to reference Catellani A, Calzolari A (2012) Functionalization of SiC(110) surfaces via porphyrin adsorption: ab initio results. J Phys Chem C 116:886–892 Catellani A, Calzolari A (2012) Functionalization of SiC(110) surfaces via porphyrin adsorption: ab initio results. J Phys Chem C 116:886–892
216.
go back to reference Schoell SJ, Sachsenhauser M, Oliveros A, Howgate J, Stutzmann M, Brandt MS, Frewin CL, Saddow SE, Sharp ID (2013) Organic functionalization of 3C-SiC surfaces. ACS Appl Mater Interfaces 5:1393–1399 Schoell SJ, Sachsenhauser M, Oliveros A, Howgate J, Stutzmann M, Brandt MS, Frewin CL, Saddow SE, Sharp ID (2013) Organic functionalization of 3C-SiC surfaces. ACS Appl Mater Interfaces 5:1393–1399
217.
go back to reference Cheng C, Needs RJ, Heine V (1988) Inter-layer interactions and the origin of SiC polytypes. J Phys C: Solid State Phys 21:1049–1063 Cheng C, Needs RJ, Heine V (1988) Inter-layer interactions and the origin of SiC polytypes. J Phys C: Solid State Phys 21:1049–1063
218.
go back to reference Heine V, Cheng C, Needs RJ (1991) The preference of silicon carbide for growth in the metastable cubic form. J Am Ceram Soc 74:2630–2633 Heine V, Cheng C, Needs RJ (1991) The preference of silicon carbide for growth in the metastable cubic form. J Am Ceram Soc 74:2630–2633
219.
go back to reference Käckell P, Wenzien B, Bechstedt F (1994) Influence of atomic relaxations on the structural properties of SiC polytypes from ab initio calculations. Phys Rev B 50:17037–17046 Käckell P, Wenzien B, Bechstedt F (1994) Influence of atomic relaxations on the structural properties of SiC polytypes from ab initio calculations. Phys Rev B 50:17037–17046
220.
go back to reference Limpijumnong S, Lambrecht WRL (1998) Total energy differences between SiC polytypes revisited. Phys Rev B 57:12017–12022 Limpijumnong S, Lambrecht WRL (1998) Total energy differences between SiC polytypes revisited. Phys Rev B 57:12017–12022
221.
go back to reference Bernstein N, Gotsis HJ, Papaconstantopoulos DA, Mehl MJ (2005) Tight-binding calculations of the band structure and total energies of the various polytypes of silicon carbide. Phys Rev B 71:075203 Bernstein N, Gotsis HJ, Papaconstantopoulos DA, Mehl MJ (2005) Tight-binding calculations of the band structure and total energies of the various polytypes of silicon carbide. Phys Rev B 71:075203
222.
go back to reference Baumann HN (1952) The relationship of alpha and beta silicon carbide. J Electrochem Soc 99:109–114 Baumann HN (1952) The relationship of alpha and beta silicon carbide. J Electrochem Soc 99:109–114
223.
go back to reference Yoo WS, Matsunami H (1991) Solid-state phase transformation in cubic silicon carbide. Jpn J Appl Phys 30:545–553 Yoo WS, Matsunami H (1991) Solid-state phase transformation in cubic silicon carbide. Jpn J Appl Phys 30:545–553
224.
go back to reference Powell JA, Will HA (1972) Low-temperature solid-state phase transformations in 2H silicon carbide. J Appl Phys 43:1400–1408 Powell JA, Will HA (1972) Low-temperature solid-state phase transformations in 2H silicon carbide. J Appl Phys 43:1400–1408
225.
go back to reference Heuer AH, Fryburg GA, Ogbuji LU, Mitchell TE (1978) β- > α transformation in polycrystalline SiC: I, microstructural aspects. J Am Ceram Soc 61:406–412 Heuer AH, Fryburg GA, Ogbuji LU, Mitchell TE (1978) β- > α transformation in polycrystalline SiC: I, microstructural aspects. J Am Ceram Soc 61:406–412
226.
go back to reference Mitchell TE, Ogbuji LU, Heuer AH (1978) β- > α transformation in polycrystalline SiC: II, interfacial energetics. J Am Ceram Soc 61:412–413 Mitchell TE, Ogbuji LU, Heuer AH (1978) β- > α transformation in polycrystalline SiC: II, interfacial energetics. J Am Ceram Soc 61:412–413
227.
go back to reference Ogbuji LU, Mitchell TE, Heuer AH (1981) The β- > α transformation in polycrystalline SiC: III, the thickness of α plates. J Am Ceram Soc 64:91–99 Ogbuji LU, Mitchell TE, Heuer AH (1981) The β- > α transformation in polycrystalline SiC: III, the thickness of α plates. J Am Ceram Soc 64:91–99
228.
go back to reference Ogbuji LU, Mitchell TE, Heuer AH, Shinozaki S (1981) The β- > α transformation in polycrystalline SiC: IV, a comparison of conventionally sintered, hot-pressed, reaction-sintered, and chemically vapor-deposited samples. J Am Ceram Soc 64:100–105 Ogbuji LU, Mitchell TE, Heuer AH, Shinozaki S (1981) The β- > α transformation in polycrystalline SiC: IV, a comparison of conventionally sintered, hot-pressed, reaction-sintered, and chemically vapor-deposited samples. J Am Ceram Soc 64:100–105
229.
go back to reference Nader M, Aldinger F, Hoffmann MJ (1999) Influence of the α/β-SiC phase transformation on microstructural development and mechanical properties of liquid phase sintered silicon carbide. J Mater Sci 34:1197–1204 Nader M, Aldinger F, Hoffmann MJ (1999) Influence of the α/β-SiC phase transformation on microstructural development and mechanical properties of liquid phase sintered silicon carbide. J Mater Sci 34:1197–1204
230.
go back to reference Starke U, Schardt J, Bernhardt J, Franke M, Heinz K (1999) Stacking transformation from hexagonal to cubic SiC induced by surface reconstruction: a seed for heterostructure growth. Phys Rev Lett 82:2107–2110 Starke U, Schardt J, Bernhardt J, Franke M, Heinz K (1999) Stacking transformation from hexagonal to cubic SiC induced by surface reconstruction: a seed for heterostructure growth. Phys Rev Lett 82:2107–2110
231.
go back to reference Okojie RS, Xhang M, Pirouz P, Tumakha S, Jessen G, Brillson LJ (2001) Observation of 4H-SiC to 3C-SiC polytypic transformation during oxidation. Appl Phys Lett 79:3056–3058 Okojie RS, Xhang M, Pirouz P, Tumakha S, Jessen G, Brillson LJ (2001) Observation of 4H-SiC to 3C-SiC polytypic transformation during oxidation. Appl Phys Lett 79:3056–3058
232.
go back to reference Chang KJ, Cohen ML (1987) Ab initio pseudopotential study of structural and high-pressure properties of SiC. Phys Rev B 35:8196–8201 Chang KJ, Cohen ML (1987) Ab initio pseudopotential study of structural and high-pressure properties of SiC. Phys Rev B 35:8196–8201
233.
go back to reference Yoshida M, Onodera A, Ueno M, Takemura K, Shimomura O (1993) Pressure-induced phase transition in SiC. Phys Rev B 48:10587–10590 Yoshida M, Onodera A, Ueno M, Takemura K, Shimomura O (1993) Pressure-induced phase transition in SiC. Phys Rev B 48:10587–10590
234.
go back to reference Karch K, Bechstedt F, Pavone P, Strauch D (1996) Pressure-dependent properties of SiC polytypes. Phys Rev B 53:13400–13413 Karch K, Bechstedt F, Pavone P, Strauch D (1996) Pressure-dependent properties of SiC polytypes. Phys Rev B 53:13400–13413
235.
go back to reference Shimojo F, Ebbsjö I, Kalia RK, Nakano A, Rino JP, Vashishta P (2000) Molecular dynamics simulation of structural transformation in silicon carbide under pressure. Phys Rev Lett 84:3338–3341 Shimojo F, Ebbsjö I, Kalia RK, Nakano A, Rino JP, Vashishta P (2000) Molecular dynamics simulation of structural transformation in silicon carbide under pressure. Phys Rev Lett 84:3338–3341
236.
go back to reference Miao MS, Lambrecht WRL (2003) Unified path for high-pressure transitions of SiC polytypes to the rocksalt structure. Phys Rev B 68:092103 Miao MS, Lambrecht WRL (2003) Unified path for high-pressure transitions of SiC polytypes to the rocksalt structure. Phys Rev B 68:092103
237.
go back to reference Vashishta P, Kalia RK, Nakano A, Rino JP (2007) Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. J Appl Phys 101:103515 Vashishta P, Kalia RK, Nakano A, Rino JP (2007) Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. J Appl Phys 101:103515
238.
go back to reference Aristov VYu, Douillard L, Fauchoux O, Soukiassian P (1997) Temperature-induced semiconducting c(4 × 2)⟺metallic (2 × 1) reversible phase transition on the β-SiC(100) surface. Phys Rev Lett 79:3700–3703 Aristov VYu, Douillard L, Fauchoux O, Soukiassian P (1997) Temperature-induced semiconducting c(4 × 2)⟺metallic (2 × 1) reversible phase transition on the β-SiC(100) surface. Phys Rev Lett 79:3700–3703
Metadata
Title
General Properties of Bulk SiC
Authors
Jiyang Fan
Paul K. Chu
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-08726-9_2

Premium Partners