Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

16-03-2019 | Original | Issue 9/2019

Archive of Applied Mechanics 9/2019

General solution for inhomogeneous line inclusion with non-uniform eigenstrain

Journal:
Archive of Applied Mechanics > Issue 9/2019
Authors:
Lifeng Ma, Yike Qiu, Yumei Zhang, Guang Li
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The inhomogeneous line inclusion problem has various backgrounds in practical application such as graphene sheet-reinforced composites, and hydrogen embrittlement, grain boundary segregation in metallic materials. Due to the long-standing mathematical difficulty, there is no explicit analytical solution obtained except for the thin ellipsoidal inhomogeneity and rigid line inhomogeneity. In this paper, to find the deformation state due to the presence of such kind of elastic inhomogeneities, the inhomogeneous line inclusion problem is tackled in the framework of plane deformation. Firstly, the fundamental solution for a point-wise residual strain is presented and its deformation strain field is derived. By using Green’s function method, the homogeneous line inclusion problem with non-uniform eigenstrain is formulated and an Eshelby tensor-like line inclusion tensor is derived. From the line inclusion concept, the classical edge dislocation is revisited. Also, by virtue of this model, some elementary line homogenous inclusion problems are explored. Secondly, based on the homogeneous line inclusion solution, the inhomogeneous line inclusion problem is formulated using the equivalent eigenstrain principle, and its general solution is derived. Then, an inhomogeneous edge dislocation model is proposed and its analytical solution is presented. Furthermore, to demonstrate the application of the proposed inhomogeneous line inclusion model, a typical thin inclusion under remote load is studied. This study provides a general solution for inhomogeneous thin inclusion problems. The models and their solutions introduced here will also find application in the mechanics of composites analysis, heterogeneous material modeling, etc.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 9/2019

Archive of Applied Mechanics 9/2019 Go to the issue

Premium Partner

    Image Credits