Skip to main content
Top

2024 | OriginalPaper | Chapter

General Transform Decomposition Method

Authors : Rania Saadeh, Bayan Ghazal, Ahmad Qazza

Published in: Mathematical Analysis and Numerical Methods

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this research, we present a new numerical method for solving fractional partial differential equations. This new approach is based on the combination of the general transformation and decomposition method. The general transform is a new integral transform that generalizes most of the Laplace transforms. In this study, it is combined with the decomposition technique to solve the time-fractional Klein-Gordon equation (TFKGE). The solution is presented in the form of a comprehensive analytical series expansion. Additionally, we provide a thorough analysis of numerical examples that effectively highlight the robustness and efficacy of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Qazza, A., Hatamleh, R., Alodat, N.: About the solution stability of Volterra integral equation with random kernel. Far East J. Math. Sci. 100, 671–680 (2016) Qazza, A., Hatamleh, R., Alodat, N.: About the solution stability of Volterra integral equation with random kernel. Far East J. Math. Sci. 100, 671–680 (2016)
2.
go back to reference Gharib, G., Saadeh, R.: Reduction of the self-dual yang-mills equations to sinh-poisson equation and exact solutions. WSEAS Interact. Mathemat. 20, 540–554 Gharib, G., Saadeh, R.: Reduction of the self-dual yang-mills equations to sinh-poisson equation and exact solutions. WSEAS Interact. Mathemat. 20, 540–554
3.
go back to reference Qazza, A., Hatamleh, R.: The existence of a solution for semi-linear abstract differential equations with infinite B chains of the characteristic sheaf. Int. J. Appl. Math. 31, 611–620 (2018)CrossRef Qazza, A., Hatamleh, R.: The existence of a solution for semi-linear abstract differential equations with infinite B chains of the characteristic sheaf. Int. J. Appl. Math. 31, 611–620 (2018)CrossRef
4.
go back to reference Saadeh, R., Al-Smadi, M., Gumah, G., Khalil, H., Khan, A.: Numerical investigation for solving two-point fuzzy boundary value problems by reproducing kernel approach. Appl. Math. Inform. Sci. 10(6), 1–13 (2016)MathSciNetCrossRef Saadeh, R., Al-Smadi, M., Gumah, G., Khalil, H., Khan, A.: Numerical investigation for solving two-point fuzzy boundary value problems by reproducing kernel approach. Appl. Math. Inform. Sci. 10(6), 1–13 (2016)MathSciNetCrossRef
5.
go back to reference Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific Publishing Co. Inc., River Edge, NJ (2000)CrossRef Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific Publishing Co. Inc., River Edge, NJ (2000)CrossRef
6.
go back to reference Laroche, E., Knittel, D.: An improved linear fractional model for robustness analysis of a winding system. Control. Eng. Pract. 13, 659–666 (2005)CrossRef Laroche, E., Knittel, D.: An improved linear fractional model for robustness analysis of a winding system. Control. Eng. Pract. 13, 659–666 (2005)CrossRef
7.
go back to reference Lai, J., Liu, F., Anh, V., Liu, Q.: A space-time finite element method for solving linear Riesz space fractional partial differential equations. Numer. Algorithms 88(1), 499–520 (2021)MathSciNetCrossRef Lai, J., Liu, F., Anh, V., Liu, Q.: A space-time finite element method for solving linear Riesz space fractional partial differential equations. Numer. Algorithms 88(1), 499–520 (2021)MathSciNetCrossRef
8.
go back to reference Calderon, A., Vinagre, B., Feliu, V.: Fractional order control strategies for power electronic buck converters. Signal Proc. 86, 2803–2819 (2006)CrossRef Calderon, A., Vinagre, B., Feliu, V.: Fractional order control strategies for power electronic buck converters. Signal Proc. 86, 2803–2819 (2006)CrossRef
9.
go back to reference Saadeh, R.: Numerical algorithm to solve a coupled system of fractional order using a novel reproducing kernel method. Alex. Eng. J. 60(5), 4583–4591 (2021)CrossRef Saadeh, R.: Numerical algorithm to solve a coupled system of fractional order using a novel reproducing kernel method. Alex. Eng. J. 60(5), 4583–4591 (2021)CrossRef
10.
go back to reference Monje, C., Vinagre, B., Feliu, V., Chen, Y.: Tuning and auto tuning of fractional order controllers for industry applications. Control. Eng. Pract. 16, 798–812 (2008)CrossRef Monje, C., Vinagre, B., Feliu, V., Chen, Y.: Tuning and auto tuning of fractional order controllers for industry applications. Control. Eng. Pract. 16, 798–812 (2008)CrossRef
11.
go back to reference Ahmed, S.A., Qazza, A., Saadeh, R.: Exact solutions of nonlinear partial differential equations via the new double integral transform combined with iterative method. Axioms 11(6), 247 (2022)CrossRef Ahmed, S.A., Qazza, A., Saadeh, R.: Exact solutions of nonlinear partial differential equations via the new double integral transform combined with iterative method. Axioms 11(6), 247 (2022)CrossRef
12.
go back to reference Edwan, R., Saadeh, R., Hadid, S., Al-Smadi, M., Momani, S.: Solving time-space-fractional cauchy problem with constant coefficients by finite-difference method. In: Zeidan, D., Padhi, S., Burqan, A., Ueberholz, P. (eds) Computational Mathematics and Applications. Forum for Interdisciplinary Mathematics. Springer, Singapore (2020) Edwan, R., Saadeh, R., Hadid, S., Al-Smadi, M., Momani, S.: Solving time-space-fractional cauchy problem with constant coefficients by finite-difference method. In: Zeidan, D., Padhi, S., Burqan, A., Ueberholz, P. (eds) Computational Mathematics and Applications. Forum for Interdisciplinary Mathematics. Springer, Singapore (2020)
13.
go back to reference Liao, J.: The proposed homotopy analysis technique for the solution of nonlinear problems. School of Ship and Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China, Ph.D. dissertation (1992) Liao, J.: The proposed homotopy analysis technique for the solution of nonlinear problems. School of Ship and Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China, Ph.D. dissertation (1992)
14.
go back to reference Saadeh, R., Ghazal, B.: A new approach on transforms: formable integral transform and its applications. Axioms 10(4), 332 (2021)CrossRef Saadeh, R., Ghazal, B.: A new approach on transforms: formable integral transform and its applications. Axioms 10(4), 332 (2021)CrossRef
15.
go back to reference Saadeh, R., Qazza, A., Burqan, A.: A new integral transform: ARA transform and its properties and applications. Symmetry 12(6), 925 (2020)CrossRef Saadeh, R., Qazza, A., Burqan, A.: A new integral transform: ARA transform and its properties and applications. Symmetry 12(6), 925 (2020)CrossRef
16.
go back to reference Qazza, A., Burqan, A., Saadeh, R.: A new attractive method in solving families of fractional differential equations by a new transform. Mathematics 9(23), 3039 (2021)CrossRef Qazza, A., Burqan, A., Saadeh, R.: A new attractive method in solving families of fractional differential equations by a new transform. Mathematics 9(23), 3039 (2021)CrossRef
17.
go back to reference Burqan, A., Saadeh, R., Qazza, A., Momani, S.: ARA-residual power series method for solving partial fractional differential equations. Alexandria Eng. J. (2022) Burqan, A., Saadeh, R., Qazza, A., Momani, S.: ARA-residual power series method for solving partial fractional differential equations. Alexandria Eng. J. (2022)
18.
go back to reference Burqan, A., Saadeh, R., Qazza, A.: A novel numerical approach in solving fractional neutral pantograph equations via the ARA integral transform. Symmetry 14(1), 50 (2022)CrossRef Burqan, A., Saadeh, R., Qazza, A.: A novel numerical approach in solving fractional neutral pantograph equations via the ARA integral transform. Symmetry 14(1), 50 (2022)CrossRef
19.
go back to reference Burqan, A., El-Ajou, A., Saadeh, R., Al-Smadi, M.: A new efficient technique using Laplace transforms and smooth expansions to construct a series solution to the time-fractional Navier-Stokes equations. Alex. Eng. J. 61(2), 1069–1077 (2022)CrossRef Burqan, A., El-Ajou, A., Saadeh, R., Al-Smadi, M.: A new efficient technique using Laplace transforms and smooth expansions to construct a series solution to the time-fractional Navier-Stokes equations. Alex. Eng. J. 61(2), 1069–1077 (2022)CrossRef
20.
go back to reference Saadeh, R.: A generalized approach of triple integral transforms and applications. J. Math. (2023) Saadeh, R.: A generalized approach of triple integral transforms and applications. J. Math. (2023)
21.
go back to reference Prakasha, D.G., Saadeh, R., Kachhia, K., Qazza, A., Malagi, N.S.: A New Computational Technique for Analytic Treatment of Time-Fractional Nonlinear Equations Arising in Magneto-Acoustic Waves. Mathematical Problems in Engineering (2023) Prakasha, D.G., Saadeh, R., Kachhia, K., Qazza, A., Malagi, N.S.: A New Computational Technique for Analytic Treatment of Time-Fractional Nonlinear Equations Arising in Magneto-Acoustic Waves. Mathematical Problems in Engineering (2023)
22.
go back to reference Saadeh, R., Sedeeg, A.K., Ghazal, B., Gharib, G.: Double formable integral transform for solving heat equations. Symmetry 15(1), 218 (2023)CrossRef Saadeh, R., Sedeeg, A.K., Ghazal, B., Gharib, G.: Double formable integral transform for solving heat equations. Symmetry 15(1), 218 (2023)CrossRef
23.
go back to reference Jafari, H.: A new general integral transform for solving integral equations. J. Adv. Res. 32, 133–138 (2021)CrossRef Jafari, H.: A new general integral transform for solving integral equations. J. Adv. Res. 32, 133–138 (2021)CrossRef
24.
go back to reference Guo, Y., Vazquez, L.: A numerical scheme for nonlinear Klein Gordon equations. J. Appl. Sci. 1, 25–32 (1983) Guo, Y., Vazquez, L.: A numerical scheme for nonlinear Klein Gordon equations. J. Appl. Sci. 1, 25–32 (1983)
25.
26.
go back to reference Adomian G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers (1994) Adomian G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers (1994)
27.
go back to reference Adomian, G.L.: Nonlinear Stochastic Operator Equations. Kluwer Academic Publishers (1986) Adomian, G.L.: Nonlinear Stochastic Operator Equations. Kluwer Academic Publishers (1986)
28.
go back to reference Jafari, H.: Numerical solution of time-fractional Klein–Gordon equation by using the decomposition methods. J. Comp. Nonlinear Dyn. 11(4) (2016) Jafari, H.: Numerical solution of time-fractional Klein–Gordon equation by using the decomposition methods. J. Comp. Nonlinear Dyn. 11(4) (2016)
29.
go back to reference Deeba, E., Khuri, S.: A decomposition method for solving the nonlinear Klein-Gordon equation. J. Comput. Phys. 124(2), 442–448 (1996)MathSciNetCrossRef Deeba, E., Khuri, S.: A decomposition method for solving the nonlinear Klein-Gordon equation. J. Comput. Phys. 124(2), 442–448 (1996)MathSciNetCrossRef
30.
go back to reference El-Sayed, M.: The decomposition method for studying the Klein-Gordon equation. Chaos Solitons Fract. 18(5), 1025–1030 (2003)MathSciNetCrossRef El-Sayed, M.: The decomposition method for studying the Klein-Gordon equation. Chaos Solitons Fract. 18(5), 1025–1030 (2003)MathSciNetCrossRef
31.
go back to reference Yusufo˘glu, E.: The variational iteration method for studying the Klein-Gordon equation. Appl. Math. Lett. 21(7), 669–674 (2008) Yusufo˘glu, E.: The variational iteration method for studying the Klein-Gordon equation. Appl. Math. Lett. 21(7), 669–674 (2008)
32.
go back to reference Kumar, A., Baleanu, D.: An analysis for Klein-Gordon equation using fractional derivative having Mittag-Leffler-type kernel. Math. Methods Appl. Sci. 44(7), 5458–5474 (2021)MathSciNetCrossRef Kumar, A., Baleanu, D.: An analysis for Klein-Gordon equation using fractional derivative having Mittag-Leffler-type kernel. Math. Methods Appl. Sci. 44(7), 5458–5474 (2021)MathSciNetCrossRef
Metadata
Title
General Transform Decomposition Method
Authors
Rania Saadeh
Bayan Ghazal
Ahmad Qazza
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4876-1_37

Premium Partner