Skip to main content
Top

2024 | OriginalPaper | Chapter

Generalized Derivations with Periodic Values on Prime Rings

Author : Giovanni Scudo

Published in: Advances in Ring Theory and Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let R be a prime ring whose characteristic is either zero or \(p>0\) such that \(p(2^n-2)\). Let \(Q_r\) be its right Martindale quotient ring, C its extended centroid and F and G non-zero generalized derivations of R. If
$$ \biggl (F(x)x-xG(x)\biggr )^n=\biggl (F(x)x-xG(x)\biggr ) $$
for all \(x\in [R,R]\), with \(n\ge 2\) fixed integer, then one of the following holds:
1.
there exists \(a\in Q_r\) such that \(F(x)=xa\) and \(G(x)=ax\), for all \(x\in R\);
 
2.
\(R\subseteq M_2(C)\), the ring of all \(2\times 2\) matrices over C, and there exist \(a,c\in R\) such that \(F(x)=ax+xc\) and \(G(x)=cx+xa\), for all \(x\in R\);
 
3.
\(R\subseteq M_2(C)\), the ring of all \(2\times 2\) matrices over C, and there exist \(a,b,q\in R\) such that \(F(x)=ax+xb\) and \(G(x)=bx+xq\), for all \(x\in R\), where \((a-q)^n=a-q\). Moreover C is periodic and, for all \(x \in [R,R]\), \(x^{2n}=x^2\).
 

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Ashraf, M., Nastasescu, C., Pary, S.A., Raza, M.A.: Commutators having idempotent values with automorphisms in semi-prime rings. Math. Rep. 20(1), 51–57 (2018)MathSciNet Ashraf, M., Nastasescu, C., Pary, S.A., Raza, M.A.: Commutators having idempotent values with automorphisms in semi-prime rings. Math. Rep. 20(1), 51–57 (2018)MathSciNet
5.
go back to reference Beidar, K.I.: Rings with generalized identities. Moscow Univ. Math. Bull. 33, 53–58 (1978) Beidar, K.I.: Rings with generalized identities. Moscow Univ. Math. Bull. 33, 53–58 (1978)
6.
go back to reference Beidar, K.I., Martindale, W.S., III., Mikhalev, A.V.: Rings with Generalized Identities. Pure and Applied Math, Dekker, New York (1996) Beidar, K.I., Martindale, W.S., III., Mikhalev, A.V.: Rings with Generalized Identities. Pure and Applied Math, Dekker, New York (1996)
9.
go back to reference Chuang, C.L., Lee, T.K.: Rings with annihilator conditions on multilinear polynomials. Chin. J. Math. 24(2), 177–185 (1996)MathSciNet Chuang, C.L., Lee, T.K.: Rings with annihilator conditions on multilinear polynomials. Chin. J. Math. 24(2), 177–185 (1996)MathSciNet
11.
go back to reference Prime nonassociative algebras: Erickson, T.S., Martindale, W.S., III., Osborne, J.M. Pacific J. Math 60, 49–63 (1975)MathSciNet Prime nonassociative algebras: Erickson, T.S., Martindale, W.S., III., Osborne, J.M. Pacific J. Math 60, 49–63 (1975)MathSciNet
13.
14.
go back to reference Jacobson, N.: Structure of Rings. Amer. Math. Soc, Providence, RI (1964) Jacobson, N.: Structure of Rings. Amer. Math. Soc, Providence, RI (1964)
16.
20.
go back to reference Lin, J.S.: Derivations of prime rings having periodic values. Chinese J. Math. 14(2), 95–102 (1986)MathSciNet Lin, J.S.: Derivations of prime rings having periodic values. Chinese J. Math. 14(2), 95–102 (1986)MathSciNet
Metadata
Title
Generalized Derivations with Periodic Values on Prime Rings
Author
Giovanni Scudo
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50795-3_17

Premium Partner