Skip to main content
Top

2024 | OriginalPaper | Chapter

Generalized Diophantine m-Tuples: A Survey

Author : Shubham Gupta

Published in: Class Groups of Number Fields and Related Topics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This survey article deals with the Diophantine m-tuples in positive integers as well as in some commutative rings with unity. In the first section, we give a brief history of the Diophantine m-tuples with the property D(n). We focus on these two problems: how many ways we can extend a Diophantine pair or triple to Diophantine quadruple; and how large a Diophantine m-tuple can be. In the last section, we generalize the concept of Diophantine m-tuples from positive integers to any commutative ring of unity and discuss some results on the line of the above problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abu Muriefah, F.S., Al Rashed, A.: Some Diophantine quadruples in the ring \(\mathbb{Z} [\sqrt{-2}]\), Math. Commun. 9, 1–8 (2004) Abu Muriefah, F.S., Al Rashed, A.: Some Diophantine quadruples in the ring \(\mathbb{Z} [\sqrt{-2}]\), Math. Commun. 9, 1–8 (2004)
2.
go back to reference Adžaga, N.: On the size of Diophantine m-tuples in imaginary quadratic number rings. Bull. Math. Sci. 9(3), Article ID: 1950020, 10 (2019) Adžaga, N.: On the size of Diophantine m-tuples in imaginary quadratic number rings. Bull. Math. Sci. 9(3), Article ID: 1950020, 10 (2019)
3.
go back to reference Adžaga, N., Filipin, A., Franušić, Z.: On the extensions of the Diophantine triples in Gaussian integers. Monatsh. Math. 197, 535–563 (2022)MathSciNetCrossRef Adžaga, N., Filipin, A., Franušić, Z.: On the extensions of the Diophantine triples in Gaussian integers. Monatsh. Math. 197, 535–563 (2022)MathSciNetCrossRef
4.
go back to reference Arkin, J., Hoggatt, V.E., Strauss, E.G.: On Euler’s solution of a problem of Diophantus. Fibonacci Quart. 17, 333–339 (1979)MathSciNetCrossRef Arkin, J., Hoggatt, V.E., Strauss, E.G.: On Euler’s solution of a problem of Diophantus. Fibonacci Quart. 17, 333–339 (1979)MathSciNetCrossRef
5.
go back to reference Baker, A., Davenport, H.: The equations \(3x^2 - 2 = y^2\) and \(8x^2 - 7 = z^2\). Quart. J. Math. Oxford Ser. 20(2), 129–137 (1969) Baker, A., Davenport, H.: The equations \(3x^2 - 2 = y^2\) and \(8x^2 - 7 = z^2\). Quart. J. Math. Oxford Ser. 20(2), 129–137 (1969)
6.
go back to reference Baker, A., Wüstholz, G.: Logarithmic forms and group varieties. J. Reine Angew. Math. 442, 19–62 (1993)MathSciNet Baker, A., Wüstholz, G.: Logarithmic forms and group varieties. J. Reine Angew. Math. 442, 19–62 (1993)MathSciNet
7.
go back to reference Bayad, A., Filipin, A., Togbé, A.: Extension of a parametric family of Diophantine triples in Gaussian integers. Acta Math. Hungar. 148, 312–327 (2016)MathSciNetCrossRef Bayad, A., Filipin, A., Togbé, A.: Extension of a parametric family of Diophantine triples in Gaussian integers. Acta Math. Hungar. 148, 312–327 (2016)MathSciNetCrossRef
8.
go back to reference Becker, R., Ram Murty, M.: Diophantine m-tuples with the property D(n). Glas. Mat. Ser. III 54, 65–75 (2019) Becker, R., Ram Murty, M.: Diophantine m-tuples with the property D(n). Glas. Mat. Ser. III 54, 65–75 (2019)
9.
go back to reference Bennett, M.A.: On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math. 498, 173–199 (1998)MathSciNetCrossRef Bennett, M.A.: On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math. 498, 173–199 (1998)MathSciNetCrossRef
10.
go back to reference Bliznac Trebješanin, M., Filipin, A.: Nonexistence of D(4)-quintuples, J. Number Theory 194, 170–217 (2019) Bliznac Trebješanin, M., Filipin, A.: Nonexistence of D(4)-quintuples, J. Number Theory 194, 170–217 (2019)
11.
go back to reference Bonciocat, N.C., Cipu, M., Mignotte, M.: There is no Diophantine \(D(-1)\)-quadruple. J. Lond. Math. Soc. 105, 63–69 (2022)MathSciNetCrossRef Bonciocat, N.C., Cipu, M., Mignotte, M.: There is no Diophantine \(D(-1)\)-quadruple. J. Lond. Math. Soc. 105, 63–69 (2022)MathSciNetCrossRef
12.
go back to reference Brown, E.: Sets in which xy + k is always a square. Math. Comp. 45, 613–620 (1985)MathSciNet Brown, E.: Sets in which xy + k is always a square. Math. Comp. 45, 613–620 (1985)MathSciNet
13.
go back to reference Bugeaud, Y., Dujella, A., Mignotte, M.: On the family of Diophantine triples \(\{k - 1, k + 1, 16k^3 - 4k\}\). Glasg. Math. J. 49(2), 333–344 (2007)MathSciNetCrossRef Bugeaud, Y., Dujella, A., Mignotte, M.: On the family of Diophantine triples \(\{k - 1, k + 1, 16k^3 - 4k\}\). Glasg. Math. J. 49(2), 333–344 (2007)MathSciNetCrossRef
14.
go back to reference Buniakovsky, V.: Sur les diviseurs numeriques invariables des fonctions rationnelles entieres. Mem Acad. Sci. St Petersburg 6, 305–329 (1857) Buniakovsky, V.: Sur les diviseurs numeriques invariables des fonctions rationnelles entieres. Mem Acad. Sci. St Petersburg 6, 305–329 (1857)
16.
go back to reference Chakraborty, K., Gupta, S., Hoque, A.: Diophantine \(D(n)\)-quadruples in \(\mathbb{Z}[\sqrt{4k + 2}]\). Glas. Mat. Ser. III (Accepted for Publication). arXiv:2302.04145 Chakraborty, K., Gupta, S., Hoque, A.: Diophantine \(D(n)\)-quadruples in \(\mathbb{Z}[\sqrt{4k + 2}]\). Glas. Mat. Ser. III (Accepted for Publication). arXiv:​2302.​04145
17.
go back to reference Chakraborty, K., Gupta, S., Hoque, A.: On a conjecture of Franušić and Jadrijević: counter-examples. Results Math. 78, Article 18 (2023) Chakraborty, K., Gupta, S., Hoque, A.: On a conjecture of Franušić and Jadrijević: counter-examples. Results Math. 78, Article 18 (2023)
18.
go back to reference Cipu, M., Trudgian, T.: Searching for Diophantine quintuples. Acta Arith. 173, 365–382 (2016)MathSciNet Cipu, M., Trudgian, T.: Searching for Diophantine quintuples. Acta Arith. 173, 365–382 (2016)MathSciNet
19.
go back to reference Cipu, M., Fujita, Y., Miyazaki, T.: On the number of extensions of a Diophantine triple. Int. J. Number Theory 14, 899–917 (2018)MathSciNetCrossRef Cipu, M., Fujita, Y., Miyazaki, T.: On the number of extensions of a Diophantine triple. Int. J. Number Theory 14, 899–917 (2018)MathSciNetCrossRef
20.
go back to reference Cipu, M., Fujita, Y., Mignotte, M.: Two-parameter families of uniquely extendable Diophantine triples. Sci. China Math. 61(3), 421–438 (2018)MathSciNetCrossRef Cipu, M., Fujita, Y., Mignotte, M.: Two-parameter families of uniquely extendable Diophantine triples. Sci. China Math. 61(3), 421–438 (2018)MathSciNetCrossRef
21.
go back to reference Dujella, A., Kazalicki, M., Mikić, M., Szikszái, M.: There are infinitely many rational Diophantine sextuples. Int. Math. Res. Not. IMRN (2), 490–508 (2017) Dujella, A., Kazalicki, M., Mikić, M., Szikszái, M.: There are infinitely many rational Diophantine sextuples. Int. Math. Res. Not. IMRN (2), 490–508 (2017)
22.
go back to reference Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. 49(2), no. 195, 291–306 (1998) Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. 49(2), no. 195, 291–306 (1998)
23.
go back to reference Dujella, A., Petričević, V.: On the largest element in D(n)-quadruples. Indag. Math. (N.S.) 30, 1079–1086 (2019) Dujella, A., Petričević, V.: On the largest element in D(n)-quadruples. Indag. Math. (N.S.) 30, 1079–1086 (2019)
25.
go back to reference Dujella, A.: The problem of Diophantus and Davenport for Gaussian integers. Glas. Mat. Ser. III(32), 1–10 (1997)MathSciNet Dujella, A.: The problem of Diophantus and Davenport for Gaussian integers. Glas. Mat. Ser. III(32), 1–10 (1997)MathSciNet
27.
go back to reference Dujella, A.: The problem of the extension of a parametric family of Diophantine triples. Publ. Math. Debrecen 51(3–4), 311–322 (1997)MathSciNetCrossRef Dujella, A.: The problem of the extension of a parametric family of Diophantine triples. Publ. Math. Debrecen 51(3–4), 311–322 (1997)MathSciNetCrossRef
28.
29.
30.
31.
go back to reference Dujella, A.: There are only finitely many Diophantine quintuples. J. Reine Angew. Math. 566, 183–214 (2004)MathSciNet Dujella, A.: There are only finitely many Diophantine quintuples. J. Reine Angew. Math. 566, 183–214 (2004)MathSciNet
33.
go back to reference Dujella, A., Franušić, Z., Petričević, V.: Formulas for Diophantine quintuples containing two pairs of conjugates in some quadratic fields. Period. Math. Hungar. 85, 303–311 (2022)MathSciNetCrossRef Dujella, A., Franušić, Z., Petričević, V.: Formulas for Diophantine quintuples containing two pairs of conjugates in some quadratic fields. Period. Math. Hungar. 85, 303–311 (2022)MathSciNetCrossRef
34.
go back to reference Earp-Lynch, B., Earp-Lynch, S., Kihel, O.: On certain \(D(9)\) and \(D(64)\) Diophantine triples. Acta Math. Hungar. 162, 483–517 (2020)MathSciNetCrossRef Earp-Lynch, B., Earp-Lynch, S., Kihel, O.: On certain \(D(9)\) and \(D(64)\) Diophantine triples. Acta Math. Hungar. 162, 483–517 (2020)MathSciNetCrossRef
35.
go back to reference Filipin, A., Fujita, Y., Togbé, A.: The extendibility of Diophantine pairs II: Examples. J. Number Theory 145, 604–631 (2014)MathSciNetCrossRef Filipin, A., Fujita, Y., Togbé, A.: The extendibility of Diophantine pairs II: Examples. J. Number Theory 145, 604–631 (2014)MathSciNetCrossRef
36.
go back to reference Franušić, Z.: Diophantine quadruples in the ring of integers of the pure cubic field \(\mathbb{Q} (3\sqrt{2})\). Miskolc. Math. Notes 14, 893–903 (2013) Franušić, Z.: Diophantine quadruples in the ring of integers of the pure cubic field \(\mathbb{Q} (3\sqrt{2})\). Miskolc. Math. Notes 14, 893–903 (2013)
37.
go back to reference Franušić, Z.: On the extension of the Diophantine pair \(\{1, 3\}\) in \(\mathbb{Z}[\sqrt{d}]\). J. Int. Seq. 13 (2010) Franušić, Z.: On the extension of the Diophantine pair \(\{1, 3\}\) in \(\mathbb{Z}[\sqrt{d}]\). J. Int. Seq. 13 (2010)
38.
go back to reference Franušić, Z.: Diophantine quadruples in the ring \(\mathbb{Z} [\sqrt{2}]\). Math. Commun. 9, 141–148 (2004)MathSciNet Franušić, Z.: Diophantine quadruples in the ring \(\mathbb{Z} [\sqrt{2}]\). Math. Commun. 9, 141–148 (2004)MathSciNet
39.
40.
go back to reference Franušić, Z.: On the extensibility of Diophantine triples \(\{k-1, k+1, 4k\}\) for Gaussian integers. Glas. Mat. Ser. III(43), 265–291 (2008)MathSciNetCrossRef Franušić, Z.: On the extensibility of Diophantine triples \(\{k-1, k+1, 4k\}\) for Gaussian integers. Glas. Mat. Ser. III(43), 265–291 (2008)MathSciNetCrossRef
41.
go back to reference Franušić, Z.: A Diophantine problem in \(\mathbb{Z} [\sqrt{(1 + d)/2}]\). Studia Sci. Math. Hungar. 46, 103–112 (2009)MathSciNet Franušić, Z.: A Diophantine problem in \(\mathbb{Z} [\sqrt{(1 + d)/2}]\). Studia Sci. Math. Hungar. 46, 103–112 (2009)MathSciNet
42.
go back to reference Franušić, Z., Jadrijević, B.: \(D(n)\)-quadruples in the ring of integers of \(\mathbb{Q} (\sqrt{2}, \sqrt{3})\). Math. Slovaca 69, 1263–1278 (2019)MathSciNetCrossRef Franušić, Z., Jadrijević, B.: \(D(n)\)-quadruples in the ring of integers of \(\mathbb{Q} (\sqrt{2}, \sqrt{3})\). Math. Slovaca 69, 1263–1278 (2019)MathSciNetCrossRef
43.
go back to reference Franušić, Z., Kreso, D.: Nonextensibility of the pair \(\{1,3\}\) to a Diophantine quintuple in \(\mathbb{Z} [\sqrt{-2}]\). J. Comb. Number Theory 3(3), 151–165 (2011)MathSciNet Franušić, Z., Kreso, D.: Nonextensibility of the pair \(\{1,3\}\) to a Diophantine quintuple in \(\mathbb{Z} [\sqrt{-2}]\). J. Comb. Number Theory 3(3), 151–165 (2011)MathSciNet
44.
go back to reference Franušić, Z., Soldo, I.: The problem of Diophantus for integers of \(\mathbb{Q} (\sqrt{-3})\), Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 18, 15–25 (2014)MathSciNet Franušić, Z., Soldo, I.: The problem of Diophantus for integers of \(\mathbb{Q} (\sqrt{-3})\), Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 18, 15–25 (2014)MathSciNet
45.
go back to reference Fujita, Y.: The number of Diophantine quintuples. Glas. Mat. Ser. III 45(65), no. 1, 15–29 (2010) Fujita, Y.: The number of Diophantine quintuples. Glas. Mat. Ser. III 45(65), no. 1, 15–29 (2010)
46.
47.
50.
go back to reference Gibbs, P.: Some rational Diophantine sextuples (English summary). Glas. Mat. Ser. III 41 61(2), 195–203 (2006) Gibbs, P.: Some rational Diophantine sextuples (English summary). Glas. Mat. Ser. III 41 61(2), 195–203 (2006)
51.
go back to reference Güloğlu, A.M., Ram Murty, M.: The Paley graph conjecture and Diophantine m-tuples. J. Combin. Theory Ser. A 170, 105155, 9 (2020) Güloğlu, A.M., Ram Murty, M.: The Paley graph conjecture and Diophantine m-tuples. J. Combin. Theory Ser. A 170, 105155, 9 (2020)
54.
go back to reference He, B., Togbé, A.: On a family of Diophantine triples \(\{k, A^2k + 2A, (A + 1)^2k + 2(A + 1)\}\) with two parameters II. Period. Math. Hungar. 64(1), 1–10 (2012)MathSciNetCrossRef He, B., Togbé, A.: On a family of Diophantine triples \(\{k, A^2k + 2A, (A + 1)^2k + 2(A + 1)\}\) with two parameters II. Period. Math. Hungar. 64(1), 1–10 (2012)MathSciNetCrossRef
55.
56.
go back to reference Jadrijević, B., Ziegler, V.: A system of relative Pellian equations and a related family of relative Thue equations. Int. J. Number Theory 2(4), 569–590 (2006)MathSciNetCrossRef Jadrijević, B., Ziegler, V.: A system of relative Pellian equations and a related family of relative Thue equations. Int. J. Number Theory 2(4), 569–590 (2006)MathSciNetCrossRef
57.
go back to reference Jukić Matić, L.: Non-existence of certain Diophantine quadruples in rings of integers of pure cubic fields. Proc. Jpn. Acad. Ser. A Math. Sci. 88, no. 10, 163–167 (2012) Jukić Matić, L.: Non-existence of certain Diophantine quadruples in rings of integers of pure cubic fields. Proc. Jpn. Acad. Ser. A Math. Sci. 88, no. 10, 163–167 (2012)
59.
go back to reference Schmidt, W.M.: Integer points on curves of genus 1. Compositio Math. 81, 33–59 (1992)MathSciNet Schmidt, W.M.: Integer points on curves of genus 1. Compositio Math. 81, 33–59 (1992)MathSciNet
61.
go back to reference Soldo, I.: On the existence of Diophantine quadruples in \(\mathbb{Z} [\sqrt{-2}]\). Miskolc. Math. Notes 14, 265–277 (2013)MathSciNetCrossRef Soldo, I.: On the existence of Diophantine quadruples in \(\mathbb{Z} [\sqrt{-2}]\). Miskolc. Math. Notes 14, 265–277 (2013)MathSciNetCrossRef
62.
go back to reference Stoll, M.: Diagonal genus 5 curves, elliptic curves over \(\mathbb{Q}(t)\), and rational Diophantine quintuples. Acta Arith. 190, 239–261 (2019) Stoll, M.: Diagonal genus 5 curves, elliptic curves over \(\mathbb{Q}(t)\), and rational Diophantine quintuples. Acta Arith. 190, 239–261 (2019)
Metadata
Title
Generalized Diophantine m-Tuples: A Survey
Author
Shubham Gupta
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6911-7_15

Premium Partner