Skip to main content
Top
Published in: Pattern Recognition and Image Analysis 4/2019

01-10-2019 | MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION AND UNDERSTANDING

Generalized Spectral-Analytical Method and Its Applications in Image Analysis and Pattern Recognition Problems

Authors: S. A. Makhortykh, L. I. Kulikova, A. N. Pankratov, R. K. Tetuev

Published in: Pattern Recognition and Image Analysis | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The generalized spectral-analytical method as a new approach to the processing of information arrays is stated. Some theoretical foundations of this method and its applications in different experimental data analysis problems are given. The method is based on the adaptive expansion of initial arrays in the functional bases belonging to the classical algebraic systems of polynomials and functions of continuous and discrete arguments (Jacobi, Chebyshev, Lagrange, Laguerre, Kravchuk, Charlier, and other polynomials). This approach combines analytical and digital data-processing procedures, thus providing a basis for the universal combined technology for the processing of information arrays. An appreciable part of this review is devoted to video data analysis and pattern-recognition problems. In addition, some relevant applications of this method in biomedical and bioinformation data analysis, recognition, classification, and diagnosis problems are described.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. L. Goncharov, Theory of Interpolation and Approximation of Functions, 2nd ed. (Gostekhteorizdat, Moscow, 1954) [in Russian]. V. L. Goncharov, Theory of Interpolation and Approximation of Functions, 2nd ed. (Gostekhteorizdat, Moscow, 1954) [in Russian].
2.
go back to reference A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics (Nauka, Moscow, 1978; Birkhäuser, Basel, 1988). A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics (Nauka, Moscow, 1978; Birkhäuser, Basel, 1988).
3.
go back to reference F. F. Dedus, A. F. Dedus, and M. N. Ustinin, “A new data processing technology for pattern recognition and image analysis problems,” Pattern Recogn. Image Anal. 2 (2), 195–207 (1992). F. F. Dedus, A. F. Dedus, and M. N. Ustinin, “A new data processing technology for pattern recognition and image analysis problems,” Pattern Recogn. Image Anal. 2 (2), 195–207 (1992).
4.
go back to reference J. K. Bowmaker, “Evolution of color vision in vertebrates,” Eye 12 (3), 541–547 (1998).CrossRef J. K. Bowmaker, “Evolution of color vision in vertebrates,” Eye 12 (3), 541–547 (1998).CrossRef
5.
go back to reference S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using shape contexts,” IEEE Trans. Pattern Anal. Mach. Intell. 24 (4), 509–522 (2002).CrossRef S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using shape contexts,” IEEE Trans. Pattern Anal. Mach. Intell. 24 (4), 509–522 (2002).CrossRef
6.
go back to reference A. Antoniou, Digital Signal Processing: Signals, Systems, and Filters (McGraw Hill, New York, 2006). A. Antoniou, Digital Signal Processing: Signals, Systems, and Filters (McGraw Hill, New York, 2006).
7.
go back to reference A. N. Pankratov, “On the implementation of algebraic operations on orthogonal function series,” Comput. Math. Math. Phys. 44 (12), 2017–2023 (2004).MathSciNet A. N. Pankratov, “On the implementation of algebraic operations on orthogonal function series,” Comput. Math. Math. Phys. 44 (12), 2017–2023 (2004).MathSciNet
8.
go back to reference G. Benson, “Tandem repeats finder: a program to analyze DNA sequences,” Nucleic Acids Res. 27 (2), 573–580 (1999).CrossRef G. Benson, “Tandem repeats finder: a program to analyze DNA sequences,” Nucleic Acids Res. 27 (2), 573–580 (1999).CrossRef
9.
go back to reference R. Kolpakov, G. Bana, and G. Kucherov, “mreps: efficient and flexible detection of tandem repeats in DNA,” Nucleic Acid Res. 31 (13), 3672–3678 (2003).CrossRef R. Kolpakov, G. Bana, and G. Kucherov, “mreps: efficient and flexible detection of tandem repeats in DNA,” Nucleic Acid Res. 31 (13), 3672–3678 (2003).CrossRef
10.
go back to reference A. Y. Ogurtsov, M. A. Roytberg, S. A. Shabalina, and A. S. Kondrashov, “OWEN: aligning long collinear regions of genomes,” Bioinformatics 18 (12), 1703–1704 (2002).CrossRef A. Y. Ogurtsov, M. A. Roytberg, S. A. Shabalina, and A. S. Kondrashov, “OWEN: aligning long collinear regions of genomes,” Bioinformatics 18 (12), 1703–1704 (2002).CrossRef
11.
go back to reference G. M. Landau, J. P. Schmidt, and D. Sokol, “An algorithm for approximate tandem repeats,” J. Comput. Biol. 8 (1), 1–18 (2001).CrossRef G. M. Landau, J. P. Schmidt, and D. Sokol, “An algorithm for approximate tandem repeats,” J. Comput. Biol. 8 (1), 1–18 (2001).CrossRef
12.
go back to reference F. F. Dedus, L. I. Kulikova, S. A. Makhortykh, N. N. Nazipova, A. N. Pankratov, and R. K. Tetuev, “Analytical recognition methods for repeated structures in genomes,” Dokl. Math. 74 (3), 926–929 (2006).MATHCrossRef F. F. Dedus, L. I. Kulikova, S. A. Makhortykh, N. N. Nazipova, A. N. Pankratov, and R. K. Tetuev, “Analytical recognition methods for repeated structures in genomes,” Dokl. Math. 74 (3), 926–929 (2006).MATHCrossRef
13.
go back to reference F. F. Dedus, L. I. Kulikova, S. A. Makhortykh, N. N. Nazipova, A. N. Pankratov, and R. K. Tetuev, “Recognition of the structural-functional organization of genetic sequences,” Moscow Univ. Comput. Math. Cybern. 31 (2), 49–53 (2007).MATHCrossRef F. F. Dedus, L. I. Kulikova, S. A. Makhortykh, N. N. Nazipova, A. N. Pankratov, and R. K. Tetuev, “Recognition of the structural-functional organization of genetic sequences,” Moscow Univ. Comput. Math. Cybern. 31 (2), 49–53 (2007).MATHCrossRef
14.
go back to reference A. N. Pankratov, M. A. Gorchakov, F. F. Dedus, N. S. Dolotova, L. I. Kulikova, S. A. Makhortykh, N. N. Nazipova, D. A. Novikova, M. M. Olshevets, M. I. Pyatkov, V. R. Rudnev, R. K. Tetuev, and V. V. Filippov, “Spectral analysis for identification and visualization of repeats in genetic sequences,” Pattern Recogn. Image Anal. 19 (4), 687–692 (2009).CrossRef A. N. Pankratov, M. A. Gorchakov, F. F. Dedus, N. S. Dolotova, L. I. Kulikova, S. A. Makhortykh, N. N. Nazipova, D. A. Novikova, M. M. Olshevets, M. I. Pyatkov, V. R. Rudnev, R. K. Tetuev, and V. V. Filippov, “Spectral analysis for identification and visualization of repeats in genetic sequences,” Pattern Recogn. Image Anal. 19 (4), 687–692 (2009).CrossRef
15.
go back to reference R. K. Tetuev, N. N. Nazipova, A. N. Pankratov, and F. F. Dedus, “Search for megasatellite tandem repeats in eukaryotic genomes by estimation of GC-content curve oscillations,” Math. Biolog. Bioinform. 5 (1), 30–42 (2010) [in Russian].CrossRef R. K. Tetuev, N. N. Nazipova, A. N. Pankratov, and F. F. Dedus, “Search for megasatellite tandem repeats in eukaryotic genomes by estimation of GC-content curve oscillations,” Math. Biolog. Bioinform. 5 (1), 30–42 (2010) [in Russian].CrossRef
16.
go back to reference R. K. Tetuev and N. N. Nazipova, “Consensus of repeated region of mouse chromosome 6 containing 60 tandem copies of a complex pattern,” Repbase Rep. 10 (5), 776 (2010). R. K. Tetuev and N. N. Nazipova, “Consensus of repeated region of mouse chromosome 6 containing 60 tandem copies of a complex pattern,” Repbase Rep. 10 (5), 776 (2010).
17.
go back to reference R. K. Tetuev, F. F. Dedus, and N. N. Nazipova, “Consensus of repeated region of rat chromosome 4 similar to mouse chromosome 6 repeated region, enclosed in the intergenic region between genes Hrh1 and Atg7,” Repbase Rep. 10 (8), 1185 (2010). R. K. Tetuev, F. F. Dedus, and N. N. Nazipova, “Consensus of repeated region of rat chromosome 4 similar to mouse chromosome 6 repeated region, enclosed in the intergenic region between genes Hrh1 and Atg7,” Repbase Rep. 10 (8), 1185 (2010).
18.
go back to reference A. N. Pankratov, M. I. Pyatkov, R. K. Tetuev, N. N. Nazipova, and F. F. Dedus, “Search for extended repeats in genomes based on the spectral-analytical method,” Math. Biolog. Bioinform. 7 (2), 476–492 (2012) [in Russian].CrossRef A. N. Pankratov, M. I. Pyatkov, R. K. Tetuev, N. N. Nazipova, and F. F. Dedus, “Search for extended repeats in genomes based on the spectral-analytical method,” Math. Biolog. Bioinform. 7 (2), 476–492 (2012) [in Russian].CrossRef
19.
go back to reference M. I. Pyatkov, V. V. Filippov, and A. N. Pankratov, “Consensus of repeated region of rabbit chromosome 17 containing over 15 huge approximate tandem repeats,” Repbase Rep. 12 (3), 256 (2012). M. I. Pyatkov, V. V. Filippov, and A. N. Pankratov, “Consensus of repeated region of rabbit chromosome 17 containing over 15 huge approximate tandem repeats,” Repbase Rep. 12 (3), 256 (2012).
20.
go back to reference A. N. Pankratov, R. K. Tetuev, M. I. Pyatkov, V. P. Toigildin, and N. N. Popova, “Spectral analytical method of recognition of inexact repeats in character sequences,” Proc. Inst. Syst. Program. Russ. Acad. Sci., 27 (6), 335–344 (2015) [in Russian]. A. N. Pankratov, R. K. Tetuev, M. I. Pyatkov, V. P. Toigildin, and N. N. Popova, “Spectral analytical method of recognition of inexact repeats in character sequences,” Proc. Inst. Syst. Program. Russ. Acad. Sci., 27 (6), 335–344 (2015) [in Russian].
21.
go back to reference M. I. Pyatkov and A. N. Pankratov, “SBARS: fast creation of dotplots for DNA sequences on different scales using GA-, GC-content,” Bioinformatics 30 (12), 1765–1766 (2014).CrossRef M. I. Pyatkov and A. N. Pankratov, “SBARS: fast creation of dotplots for DNA sequences on different scales using GA-, GC-content,” Bioinformatics 30 (12), 1765–1766 (2014).CrossRef
22.
go back to reference K. Katoh, K. Misawa, K. Kuma, and T. Miyata, “MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform,” Nucleic Acids Res. 30 (14), 3059–3066 (2002).CrossRef K. Katoh, K. Misawa, K. Kuma, and T. Miyata, “MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform,” Nucleic Acids Res. 30 (14), 3059–3066 (2002).CrossRef
23.
go back to reference D. Sharma, B. Issac, G. P. S. Raghava, and R. Ramaswamy, “Spectral Repeat Finder (SRF): Identification of repetitive sequences using Fourier transformation,” Bioinformatics 20 (9), 1405–1412 (2004).CrossRef D. Sharma, B. Issac, G. P. S. Raghava, and R. Ramaswamy, “Spectral Repeat Finder (SRF): Identification of repetitive sequences using Fourier transformation,” Bioinformatics 20 (9), 1405–1412 (2004).CrossRef
24.
go back to reference L. Du, H. Zhou, and H. Yan, “OMWSA: detection of DNA repeats using moving window spectral analysis,” Bioinformatics 23 (5), 631–633 (2007).CrossRef L. Du, H. Zhou, and H. Yan, “OMWSA: detection of DNA repeats using moving window spectral analysis,” Bioinformatics 23 (5), 631–633 (2007).CrossRef
25.
go back to reference J. Krumsiek, R. Arnold, and T. Rattei, “Gepard: a rapid and sensitive tool for creating dotplots on genome scale,” Bioinformatics 23 (8), 1026–1028 (2007).CrossRef J. Krumsiek, R. Arnold, and T. Rattei, “Gepard: a rapid and sensitive tool for creating dotplots on genome scale,” Bioinformatics 23 (8), 1026–1028 (2007).CrossRef
26.
go back to reference R. K. Tetuev, M. I. Pyatkov, and A. N. Pankratov, “Parallel algorithm for global alignment of long aminoacid and nucleotide sequences,” Math. Biolog. Bioinform. 12 (1), 137–150 (2017) [in Russian].CrossRef R. K. Tetuev, M. I. Pyatkov, and A. N. Pankratov, “Parallel algorithm for global alignment of long aminoacid and nucleotide sequences,” Math. Biolog. Bioinform. 12 (1), 137–150 (2017) [in Russian].CrossRef
27.
go back to reference A. N. Pankratov, R. K. Tetuev, and M. I. Pyatkov, “LSCGAT: Long sequences customizable global alignment tool,” J. Bioinf. Genomics No. 1 (10), 3 pages (2019). A. N. Pankratov, R. K. Tetuev, and M. I. Pyatkov, “LSCGAT: Long sequences customizable global alignment tool,” J. Bioinf. Genomics No. 1 (10), 3 pages (2019).
28.
go back to reference E. V. Brazhnikov and A. V. Efimov, “Structure of α-α-hairpins with short connections in globular proteins,” Mol. Biol. 35 (1), 89–97 (2001).CrossRef E. V. Brazhnikov and A. V. Efimov, “Structure of α-α-hairpins with short connections in globular proteins,” Mol. Biol. 35 (1), 89–97 (2001).CrossRef
29.
go back to reference A. V. Efimov, “A new super-secondary protein structure: the alpha alpha-angle,” Mol. Biol. (Mosk.) 18 (6), 1524–1537 (1984) [in Russian]. A. V. Efimov, “A new super-secondary protein structure: the alpha alpha-angle,” Mol. Biol. (Mosk.) 18 (6), 1524–1537 (1984) [in Russian].
30.
go back to reference A. V. Efimov, “Standard structures in proteins,” Prog. Biophys. Mol. Biol. 60 (3), 201–239 (1993).CrossRef A. V. Efimov, “Standard structures in proteins,” Prog. Biophys. Mol. Biol. 60 (3), 201–239 (1993).CrossRef
31.
go back to reference A. V. Efimov, “L-shaped structure from two alpha-helices with a proline residue between them,” Mol. Biol. (Mosk.) 26 (6), 1370–1376 (1992) [in Russian]. A. V. Efimov, “L-shaped structure from two alpha-helices with a proline residue between them,” Mol. Biol. (Mosk.) 26 (6), 1370–1376 (1992) [in Russian].
32.
go back to reference C. Chothia, M. Levitt, and D. Richardson, “Structure of proteins: Packing of α-helices and pleated sheets,” Proc. Natl. Acad. Sci. U. S. A. 74 (10), 4130–4134 (1977).CrossRef C. Chothia, M. Levitt, and D. Richardson, “Structure of proteins: Packing of α-helices and pleated sheets,” Proc. Natl. Acad. Sci. U. S. A. 74 (10), 4130–4134 (1977).CrossRef
33.
go back to reference C. Chothia, M. Levitt, and D. Richardson, “Helix to helix packing in proteins,” J. Mol. Biol. 145 (1), 215–250 (1981).CrossRef C. Chothia, M. Levitt, and D. Richardson, “Helix to helix packing in proteins,” J. Mol. Biol. 145 (1), 215–250 (1981).CrossRef
34.
go back to reference D. Walther, F. Eisenhaber, and P. Argos, “Principles of helix-helix packing in proteins: The helical lattice superposition model,” J. Mol. Biol. 255 (3), 536–553 (1996).CrossRef D. Walther, F. Eisenhaber, and P. Argos, “Principles of helix-helix packing in proteins: The helical lattice superposition model,” J. Mol. Biol. 255 (3), 536–553 (1996).CrossRef
35.
go back to reference A. Trovato and F. Seno, “A new perspective on analysis of helix-helix packing preferences in globular proteins,” Proteins: Struct., Funct., Bioinf. 55 (4), 1014–102 (2004). A. Trovato and F. Seno, “A new perspective on analysis of helix-helix packing preferences in globular proteins,” Proteins: Struct., Funct., Bioinf. 55 (4), 1014–102 (2004).
36.
go back to reference H. Bateman and A. Erdélyi, Higher transcendental functions, Vol. II (McGraw Hill, New York, 1953; Nauka, Moscow, 1966). H. Bateman and A. Erdélyi, Higher transcendental functions, Vol. II (McGraw Hill, New York, 1953; Nauka, Moscow, 1966).
37.
go back to reference A. F. Nikiforov, V. B. Uvarov, and S. K. Suslov, Classical Orthogonal Polynomials of a Discrete Variable, in Springer Series in Computational Physics (Springer, Berlin, Heidelberg, 1991). A. F. Nikiforov, V. B. Uvarov, and S. K. Suslov, Classical Orthogonal Polynomials of a Discrete Variable, in Springer Series in Computational Physics (Springer, Berlin, Heidelberg, 1991).
38.
go back to reference H. Jeffreys and B. Swirles, Methods of Mathematical Physics, 3rd ed. (Cambridge Univ. Press, Cambridge, 1966; Mir, Moscow, 1970) [Vol. 3 of the Russian translation]. H. Jeffreys and B. Swirles, Methods of Mathematical Physics, 3rd ed. (Cambridge Univ. Press, Cambridge, 1966; Mir, Moscow, 1970) [Vol. 3 of the Russian translation].
39.
go back to reference E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton Univ. Press, Princeton, NJ, 1971); Introduction to Harmonic Analysis on Euclidean Spaces (Mir, Moscow, 1974) [in Russian]. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton Univ. Press, Princeton, NJ, 1971); Introduction to Harmonic Analysis on Euclidean Spaces (Mir, Moscow, 1974) [in Russian].
40.
go back to reference N. Ya. Vilenkin, Special Functions and Theory of Group Representations (Nauka, Moscow, 1991) [in Russian].CrossRef N. Ya. Vilenkin, Special Functions and Theory of Group Representations (Nauka, Moscow, 1991) [in Russian].CrossRef
41.
go back to reference W. Magnus and F. Oberhettinger, Formulas and Theorems for the Special Functions of Mathematical Physics (Chelsea Publ., New York, 1954).MATH W. Magnus and F. Oberhettinger, Formulas and Theorems for the Special Functions of Mathematical Physics (Chelsea Publ., New York, 1954).MATH
42.
go back to reference M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, Vol. 55 (U.S. Government Printing Office, Washington, D.C., 1964) [Chapter 8].MATH M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, Vol. 55 (U.S. Government Printing Office, Washington, D.C., 1964) [Chapter 8].MATH
43.
go back to reference F. F. Dedus, S. A. Makhortykh, M. N. Ustinin, and A. F. Dedus, Generalized Spectral-Analytic Method for Data File Processing. Problems of Image Analysis and Pattern Recognition (Mashinostroenie, Moscow, 1999) [in Russian]. F. F. Dedus, S. A. Makhortykh, M. N. Ustinin, and A. F. Dedus, Generalized Spectral-Analytic Method for Data File Processing. Problems of Image Analysis and Pattern Recognition (Mashinostroenie, Moscow, 1999) [in Russian].
44.
go back to reference S. A. Makhortykh, “Generalized spectral-analytical method for biomedical data processing,” Math. Montisnigri XXXVI, 104–113 (2016).MathSciNetMATH S. A. Makhortykh, “Generalized spectral-analytical method for biomedical data processing,” Math. Montisnigri XXXVI, 104–113 (2016).MathSciNetMATH
45.
go back to reference M. N. Ustinin, S. A. Makhortykh, A. M. Molchanov, et al., “Problems of the analysis of magnetic encephalography data,” in Computers and Supercomputers in Biology, Ed. by V. D. Lakhno and M. N. Ustinin (Inst. Komp. Issled., Izhevsk, Moscow, 2002), pp. 327–349 [in Russian]. M. N. Ustinin, S. A. Makhortykh, A. M. Molchanov, et al., “Problems of the analysis of magnetic encephalography data,” in Computers and Supercomputers in Biology, Ed. by V. D. Lakhno and M. N. Ustinin (Inst. Komp. Issled., Izhevsk, Moscow, 2002), pp. 327–349 [in Russian].
46.
go back to reference L. I. Kulikova and S. A. Makhortykh, “Mathematical operations on two-dimensional signals in bases of spherical harmonics,” Investigated in Russia 9, 598–608 (2006) [Electronic journal, in Russian]. L. I. Kulikova and S. A. Makhortykh, “Mathematical operations on two-dimensional signals in bases of spherical harmonics,” Investigated in Russia 9, 598–608 (2006) [Electronic journal, in Russian].
47.
go back to reference A. V. Derguzov and S. A. Makhortykh, “Spectral analysis and data classification in magnetoencephalography,” Pattern Recogn. Image Anal. 16 (3), 497–505 (2006).CrossRef A. V. Derguzov and S. A. Makhortykh, “Spectral analysis and data classification in magnetoencephalography,” Pattern Recogn. Image Anal. 16 (3), 497–505 (2006).CrossRef
48.
go back to reference T. Boraud, E. Bezard, B. Bioulac, and C. E. Gross, “From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control,” Prog. Neurobiol. 66 (4), 265–283 (2002).CrossRef T. Boraud, E. Bezard, B. Bioulac, and C. E. Gross, “From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control,” Prog. Neurobiol. 66 (4), 265–283 (2002).CrossRef
49.
go back to reference M. B. H. Youdim and P. Riederer, “Understanding Parkinson’s disease,” Sci. Am. 276 (1), 52–59 (1997).CrossRef M. B. H. Youdim and P. Riederer, “Understanding Parkinson’s disease,” Sci. Am. 276 (1), 52–59 (1997).CrossRef
50.
go back to reference R. K. Tetouev, “Contour recognition based on spectral methods. Solution of the problem of choice of the start-point,” Pattern Recogn. Image Anal. 17 (2), 243–251 (2007).CrossRef R. K. Tetouev, “Contour recognition based on spectral methods. Solution of the problem of choice of the start-point,” Pattern Recogn. Image Anal. 17 (2), 243–251 (2007).CrossRef
51.
go back to reference H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, “The protein Data Bank,” Nucleic Acids Res. 28 (1), 235–242 (2000).CrossRef H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, “The protein Data Bank,” Nucleic Acids Res. 28 (1), 235–242 (2000).CrossRef
52.
go back to reference V. R. Rudnev, A. N. Pankratov, L.I. Kulikova, F. F. Dedus, D. A. Tikhonov, and A. V. Efimov, “Recognition and stability analysis of structural motifs of α-α-corner type in globular proteins,” Mat. Biolog. Bioinform. 8 (2), 398–406 (2013) [in Russian].CrossRef V. R. Rudnev, A. N. Pankratov, L.I. Kulikova, F. F. Dedus, D. A. Tikhonov, and A. V. Efimov, “Recognition and stability analysis of structural motifs of α-α-corner type in globular proteins,” Mat. Biolog. Bioinform. 8 (2), 398–406 (2013) [in Russian].CrossRef
53.
go back to reference V. R. Rudnev, A. N. Pankratov, L.I. Kulikova, F. F. Dedus, D. A. Tikhonov, and A. V. Efimov, “Conformational analysis of structural motifs of α-α-corner in the computational experiment of molecular dynamics,” Mat. Biolog. Bioinform. 9 (2), 575–584 (2014) [in Russian].CrossRef V. R. Rudnev, A. N. Pankratov, L.I. Kulikova, F. F. Dedus, D. A. Tikhonov, and A. V. Efimov, “Conformational analysis of structural motifs of α-α-corner in the computational experiment of molecular dynamics,” Mat. Biolog. Bioinform. 9 (2), 575–584 (2014) [in Russian].CrossRef
54.
go back to reference D. A. Tikhonov, L. I. Kulikova, and A. V. Efimov, “Statistical analysis of internal distances of helical pairs in protein molecules,” Mat. Biolog. Bioinform. 11 (2), 170–190 (2016) [in Russian].CrossRef D. A. Tikhonov, L. I. Kulikova, and A. V. Efimov, “Statistical analysis of internal distances of helical pairs in protein molecules,” Mat. Biolog. Bioinform. 11 (2), 170–190 (2016) [in Russian].CrossRef
55.
go back to reference D. A. Tikhonov, L. I. Kulikova, and A. V. Efimov, “The study of interhelical angles in the structural motifs formed by two helices,” Mat. Biolog. Bioinform. 12 (1), 83–101 (2017) [in Russian].CrossRef D. A. Tikhonov, L. I. Kulikova, and A. V. Efimov, “The study of interhelical angles in the structural motifs formed by two helices,” Mat. Biolog. Bioinform. 12 (1), 83–101 (2017) [in Russian].CrossRef
56.
go back to reference D. A. Tikhonov, L. I. Kulikova, and A. V. Efimov, “Analysis of torsion angles between helical axes in pairs of helices in protein molecules,” Mat. Biolog. Bioinform. 12 (2), 398–410 (2017) [in Russian].CrossRef D. A. Tikhonov, L. I. Kulikova, and A. V. Efimov, “Analysis of torsion angles between helical axes in pairs of helices in protein molecules,” Mat. Biolog. Bioinform. 12 (2), 398–410 (2017) [in Russian].CrossRef
57.
go back to reference D. A. Tikhonov, L. I. Kulikova, and A. V. Efimov, “Analysis of the areas and perimeters of polygons of the helices projections intersection in helical pairs of protein molecules,” Keldysh Institute of Applied Mathematics Preprint No. 59 (2018) [in Russian]. D. A. Tikhonov, L. I. Kulikova, and A. V. Efimov, “Analysis of the areas and perimeters of polygons of the helices projections intersection in helical pairs of protein molecules,” Keldysh Institute of Applied Mathematics Preprint No. 59 (2018) [in Russian].
Metadata
Title
Generalized Spectral-Analytical Method and Its Applications in Image Analysis and Pattern Recognition Problems
Authors
S. A. Makhortykh
L. I. Kulikova
A. N. Pankratov
R. K. Tetuev
Publication date
01-10-2019
Publisher
Pleiades Publishing
Published in
Pattern Recognition and Image Analysis / Issue 4/2019
Print ISSN: 1054-6618
Electronic ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661819040102

Other articles of this Issue 4/2019

Pattern Recognition and Image Analysis 4/2019 Go to the issue

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION AND UNDERSTANDING

Descriptive Image Analysis: Part II. Descriptive Image Models

Premium Partner