Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 2/2022

01-02-2022 | STRENGTH AND PLASTICITY

Generalized von Mises Criterion as a Tool for Determining the Strength Properties of Hexagonal Materials

Authors: A. G. Kesarev, A. M. Vlasova

Published in: Physics of Metals and Metallography | Issue 2/2022

Login to get access
share
SHARE

Abstract

Using the previously proposed generalization of the von Mises yield criterion for crystals with a hexagonal lattice, the dependence of the stress tensor on the strain tensor and applied external pressure is found. The case of plane deformation with an arbitrary orientation of crystallites is analyzed in detail. The components of the stress tensor deviator for magnesium single crystals with all kinds of orientations are calculated, and the stress level lines are plotted for the onset of plastic flow.
Literature
1.
go back to reference A. M. Vlasova and A. G. Kesarev, “Deformation model of magnesium single crystals,” Russ. Phys. J. 61, No. 7, 1258–1269 (2018). CrossRef A. M. Vlasova and A. G. Kesarev, “Deformation model of magnesium single crystals,” Russ. Phys. J. 61, No. 7, 1258–1269 (2018). CrossRef
2.
go back to reference A. M. Vlasova and A. G. Kesarev, “A generalization of the von mises criterion for a single crystal with a hexagonal crystal lattice,” Mech. Solids. 54, 1197–1207 (2019). CrossRef A. M. Vlasova and A. G. Kesarev, “A generalization of the von mises criterion for a single crystal with a hexagonal crystal lattice,” Mech. Solids. 54, 1197–1207 (2019). CrossRef
3.
go back to reference B. E. Pobedrya, Mechanics of Composites (Izdatel’stvo Moskovskogo Universiteta, Moscow, 1984). B. E. Pobedrya, Mechanics of Composites (Izdatel’stvo Moskovskogo Universiteta, Moscow, 1984).
4.
go back to reference P. V. Trusov, P. S. Volegov, and N. S. Kondrat’ev, Physical Theory of Plasticity (Izd-vo Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo un-ta, Perm, 2013) [in Russian]. P. V. Trusov, P. S. Volegov, and N. S. Kondrat’ev, Physical Theory of Plasticity (Izd-vo Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo un-ta, Perm, 2013) [in Russian].
5.
go back to reference L. I. Sedov, Continuum Mechanics (Nauka, Moscow, 1994), Vol. 2 [in Russian]. L. I. Sedov, Continuum Mechanics (Nauka, Moscow, 1994), Vol. 2 [in Russian].
6.
go back to reference L. I. Sedov, Continuum Mechanics (Nauka, Moscow, 1994), Vol. 1 [in Russian]. L. I. Sedov, Continuum Mechanics (Nauka, Moscow, 1994), Vol. 1 [in Russian].
7.
go back to reference B. E. Pobedrya, Lectures on Tensor Analysis (Izdatel’stvo Moskovskogo Universiteta, Moscow, 1986). B. E. Pobedrya, Lectures on Tensor Analysis (Izdatel’stvo Moskovskogo Universiteta, Moscow, 1986).
8.
go back to reference E. W. Kelly and W. F. Hosford, “Plane-strain compression of magnesium and magnesium alloy crystals,” Trans. Metall. Soc. AIME 242, 5–15 (1968). E. W. Kelly and W. F. Hosford, “Plane-strain compression of magnesium and magnesium alloy crystals,” Trans. Metall. Soc. AIME 242, 5–15 (1968).
9.
go back to reference B. C. Wonsiewicz and W. A. Backofen, “Plasticity of magnesium crystals,” Trans. AIME 239, 1422–1431 (1967). B. C. Wonsiewicz and W. A. Backofen, “Plasticity of magnesium crystals,” Trans. AIME 239, 1422–1431 (1967).
10.
go back to reference Ya. S. Umanskii, Yu. A. Skakov, A. M. Ivanov, and L. I. Rastorguev, Crystallography, X-ray Diffraction, and Electron Microscopy (Metallurgiya, Moscow, 1982). Ya. S. Umanskii, Yu. A. Skakov, A. M. Ivanov, and L. I. Rastorguev, Crystallography, X-ray Diffraction, and Electron Microscopy (Metallurgiya, Moscow, 1982).
Metadata
Title
Generalized von Mises Criterion as a Tool for Determining the Strength Properties of Hexagonal Materials
Authors
A. G. Kesarev
A. M. Vlasova
Publication date
01-02-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 2/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22020041