Skip to main content
Top

2023 | OriginalPaper | Chapter

Generation of Course Prerequisites and Learning Outcomes Using Machine Learning Methods

Authors : Polina Shnaider, Anastasiia Chernysheva, Maksim Khlopotov, Carina Babayants

Published in: Artificial Intelligence in Education Technologies: New Development and Innovative Practices

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper addresses the problem of academic course prerequisites and learning outcomes generation in learning analytics systems. For prerequisites generation, collaborative filtering, i.e., ALS algorithm for Matrix Factorization, is used. For learning outcomes generation, the study discusses an approach based on Computational Linguistics data extraction methods and content-based filtering to recommend potential outcomes. The recommendation mechanisms are designed to be implemented in the Educational Program Maker service for working with education process elements. The study's primary goal is to simplify, formalize and speed up the course development process. Implementation of the approach will make it possible to build unambiguous interdisciplinary connections, identify the closest intersections of the curriculum courses, and build individual learning pathways.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Sama, R., Thamarai, L., Dr. Paul, P. Victer.: A survey on predictive models of learning analytics. Proc. Comput. Sci. 167, 37–46 (2020) Sama, R., Thamarai, L., Dr. Paul, P. Victer.: A survey on predictive models of learning analytics. Proc. Comput. Sci. 167, 37–46 (2020)
3.
go back to reference Talbi, O., Chelik, N., Ouared, A., Ali, N.: Additive explanations for student fails detected from course prerequisites. In: International Conference of Women in Data Science, pp.1–7. Taif University (WiDSTaif) (2021) Talbi, O., Chelik, N., Ouared, A., Ali, N.: Additive explanations for student fails detected from course prerequisites. In: International Conference of Women in Data Science, pp.1–7. Taif University (WiDSTaif) (2021)
4.
go back to reference Liu, Q., Jia, X., Yang, W., Tu, F., Wu, L.: Research on entity relation extraction based on BiLSTM-CRF classical probability word problems. In: 13th International Conference on Education Technology and Computers. Association for Computing Machinery, pp. 62–68. New York, NY, USA (2021) Liu, Q., Jia, X., Yang, W., Tu, F., Wu, L.: Research on entity relation extraction based on BiLSTM-CRF classical probability word problems. In: 13th International Conference on Education Technology and Computers. Association for Computing Machinery, pp. 62–68. New York, NY, USA (2021)
5.
go back to reference Ahera, S.B., Lobo, L.M.R.J.: Combination of machine learning algorithms for recommendation of courses in E-Learning System based on historical data. Knowl.-Based Syst. 51, 1–14 (2013)CrossRef Ahera, S.B., Lobo, L.M.R.J.: Combination of machine learning algorithms for recommendation of courses in E-Learning System based on historical data. Knowl.-Based Syst. 51, 1–14 (2013)CrossRef
6.
go back to reference McMillan-Capehart, A., Adeyemi-Bello, T.: Prerequisite coursework as a predictor of performance in a graduate management course. J. College Teach. Learn. (TLC) 5(7) (2008) McMillan-Capehart, A., Adeyemi-Bello, T.: Prerequisite coursework as a predictor of performance in a graduate management course. J. College Teach. Learn. (TLC) 5(7) (2008)
7.
go back to reference Krol, Ed S et al.: Association between prerequisites and academic success at a Canadian university's pharmacy program. Am. J. Pharm. Educ. 83(1) (2019) Krol, Ed S et al.: Association between prerequisites and academic success at a Canadian university's pharmacy program. Am. J. Pharm. Educ. 83(1) (2019)
8.
go back to reference Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42, 30–37 (2009)CrossRef Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42, 30–37 (2009)CrossRef
9.
go back to reference Almutairi, F., Sidiropoulos, N.D., Karypis, G.: Context-aware recommendation-based learning analytics using tensor and coupled matrix factorization. IEEE Journal of Selected Topics in Signal Processing, pp. 1–10 (2017) Almutairi, F., Sidiropoulos, N.D., Karypis, G.: Context-aware recommendation-based learning analytics using tensor and coupled matrix factorization. IEEE Journal of Selected Topics in Signal Processing, pp. 1–10 (2017)
10.
go back to reference Jembere, E., Rawatlal, R., Pillay, A.W.: Matrix factorisation for predicting student performance. In: 7th World Engineering Education Forum (WEEF), pp. 513–518 (2017) Jembere, E., Rawatlal, R., Pillay, A.W.: Matrix factorisation for predicting student performance. In: 7th World Engineering Education Forum (WEEF), pp. 513–518 (2017)
11.
go back to reference Hu, Y.F., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Proceedings of the IEEE Int’l Conference Data Mining (ICDM 08), IEEE CS Press, pp. 263–272 (2008) Hu, Y.F., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Proceedings of the IEEE Int’l Conference Data Mining (ICDM 08), IEEE CS Press, pp. 263–272 (2008)
12.
go back to reference Chernysheva, A., Khlopotov, M., Zubok, D.: Subject area study: keywords in scholarly article abstracts graph analysis. In: CEUR Workshop Proceedings, pp. 155–166 (2021) Chernysheva, A., Khlopotov, M., Zubok, D.: Subject area study: keywords in scholarly article abstracts graph analysis. In: CEUR Workshop Proceedings, pp. 155–166 (2021)
13.
go back to reference Koshkareva, M., Khlopotov, M., Chernysheva A.: The development of learning outcomes and prerequisite knowledge recommendation system. Association for Computing Machinery, New York, pp. 1–6 (2021) Koshkareva, M., Khlopotov, M., Chernysheva A.: The development of learning outcomes and prerequisite knowledge recommendation system. Association for Computing Machinery, New York, pp. 1–6 (2021)
14.
go back to reference Yang, Y., Cer, D., Ahmad, A., Guo, M., Law, J., Constant, N., Abrego, G.H., Yuan, S., Tar, C., Sung, Y.-H., Strope, B., Kurzweil, R.: Multilingual universal sentence encoder for semantic retrieval. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 87–94 (2020) Yang, Y., Cer, D., Ahmad, A., Guo, M., Law, J., Constant, N., Abrego, G.H., Yuan, S., Tar, C., Sung, Y.-H., Strope, B., Kurzweil, R.: Multilingual universal sentence encoder for semantic retrieval. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 87–94 (2020)
15.
go back to reference Kuratov, Y., Arkhipov, M.: adaptation of deep bidirectional multilingual transformers for russian language (2019) Kuratov, Y., Arkhipov, M.: adaptation of deep bidirectional multilingual transformers for russian language (2019)
19.
go back to reference Bouma, G.: Normalized (Pointwise) mutual information in collocation extraction. Proc. Ger. Soc. Comput. Linguist 31–40 (2009) Bouma, G.: Normalized (Pointwise) mutual information in collocation extraction. Proc. Ger. Soc. Comput. Linguist 31–40 (2009)
20.
go back to reference Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, vol. 2(13). Curran Associates Inc., Red Hook, NY, USA, pp. 3111–3119 (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, vol. 2(13). Curran Associates Inc., Red Hook, NY, USA, pp. 3111–3119 (2013)
Metadata
Title
Generation of Course Prerequisites and Learning Outcomes Using Machine Learning Methods
Authors
Polina Shnaider
Anastasiia Chernysheva
Maksim Khlopotov
Carina Babayants
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-8040-4_3

Premium Partner