Skip to main content
Top
Published in: Automatic Control and Computer Sciences 8/2022

01-12-2022

Generation of Synthetic Data for Honeypot Systems Using Deep Learning Methods

Authors: V. D. Danilov, T. D. Ovasapyan, D. V. Ivanov, A. S. Konoplev, D. A. Moskvin

Published in: Automatic Control and Computer Sciences | Issue 8/2022

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents studies intended to analyze the methods for generating synthetic data to fill honeypot systems. To choose the generated data types, the topical target objects in the context of honeypot systems are revealed. The existing methods of generation are investigated. Methods for analyzing the quality of generated data in the context of honeypot systems are also analyzed. As a result, the layout of an automated system for generating synthetic data for honeypot systems is developed and the efficiency of its operation is estimated.
Literature
1.
go back to reference Positive Technologies, 2021. https://www.ptsecurity.com/ru-ru/research/analytics/cybersecurity-threatscape-2021-q1/. Cited February, 2022. Positive Technologies, 2021. https://​www.​ptsecurity.​com/​ru-ru/​research/​analytics/​cybersecurity-threatscape-2021-q1/​.​ Cited February, 2022.
2.
go back to reference Mairh, A., Barik, D., Verma, K., Jena, D., Honeypot in network security: A survey, ICCCS ’11: Proc. 2011 Int. Conf. on Communication, Computing & Security, Rourkela Odisha, India, 2011, New York: Association for Computing Machinery, 2011, pp. 600–605. https://doi.org/10.1145/1947940.1948065 Mairh, A., Barik, D., Verma, K., Jena, D., Honeypot in network security: A survey, ICCCS ’11: Proc. 2011 Int. Conf. on Communication, Computing & Security, Rourkela Odisha, India, 2011, New York: Association for Computing Machinery, 2011, pp. 600–605.  https://​doi.​org/​10.​1145/​1947940.​1948065
6.
go back to reference Positive Technologies. https://www.ptsecurity.com/ru-ru/about/news/positive-technologies-chislo-atak-na-promyshlennye-kompanii-vyroslo-na-91-po-sravneniyu-s-2019-godom/. Cited November 10, 2021. Positive Technologies. https://​www.​ptsecurity.​com/​ru-ru/​about/​news/​positive-technologies-chislo-atak-na-promyshlennye-kompanii-vyroslo-na-91-po-sravneniyu-s-2019-godom/​.​ Cited November 10, 2021.
8.
go back to reference Ivanov, D., Kalinin, M., Krundyshev, V., and Orel, E., Automatic security management of smart infrastructures using attack graph and risk analysis, 2020 Fourth World Conf. on Smart Trends in Systems, Security and Sustainability (WorldS5), London, 2020, IEEE, 2020, pp. 295–300. https://doi.org/10.1109/WorldS450073.2020.9210410 Ivanov, D., Kalinin, M., Krundyshev, V., and Orel, E., Automatic security management of smart infrastructures using attack graph and risk analysis, 2020 Fourth World Conf. on Smart Trends in Systems, Security and Sustainability (WorldS5), London, 2020, IEEE, 2020, pp. 295–300.  https://​doi.​org/​10.​1109/​WorldS450073.​2020.​9210410
11.
go back to reference Belenko, V., Krundyshev, V., and Kalinin, M., Synthetic datasets generation for intrusion detection in VANET, SIN ’18: Proc. 11th Int. Conf. on Security of Information and Networks, Cardiff, UK, 2018, New York: Association for Computing Machinery, 2018, p. 9. https://doi.org/10.1145/3264437.3264479 Belenko, V., Krundyshev, V., and Kalinin, M., Synthetic datasets generation for intrusion detection in VANET, SIN ’18: Proc. 11th Int. Conf. on Security of Information and Networks, Cardiff, UK, 2018, New York: Association for Computing Machinery, 2018, p. 9.  https://​doi.​org/​10.​1145/​3264437.​3264479
12.
go back to reference Belenko, V., Chernenko, V., Kalinin, M., and Krundyshev, V., Evaluation of GAN applicability for intrusion detection in self-organizing networks of cyber physical systems, 2018 Int. Russian Automation Conf. (RusAutoCon), Sochi, Russia, 2018, IEEE, 2018, pp. 1–7. https://doi.org/10.1109/RUSAUTOCON.2018.8501783 Belenko, V., Chernenko, V., Kalinin, M., and Krundyshev, V., Evaluation of GAN applicability for intrusion detection in self-organizing networks of cyber physical systems, 2018 Int. Russian Automation Conf. (RusAutoCon), Sochi, Russia, 2018, IEEE, 2018, pp. 1–7.  https://​doi.​org/​10.​1109/​RUSAUTOCON.​2018.​8501783
14.
go back to reference Stadler T., Oprisanu B., and Troncoso C., Synthetic data-anonymisation Groundhog Day, 31st USENIX Security Symp. (USENIX Security 22), Boston: USENIX Association, 2022, pp. 1451–1468. https://www.usenix.org/ conference/usenixsecurity22/presentation/stadler. Stadler T., Oprisanu B., and Troncoso C., Synthetic data-anonymisation Groundhog Day, 31st USENIX Security Symp. (USENIX Security 22), Boston: USENIX Association, 2022, pp. 1451–1468. https://​www.​usenix.​org/​ conference/usenixsecurity22/presentation/stadler.
15.
17.
go back to reference Bellovin, S.M., Dutta, P.K., and Reitinger, N., Privacy and synthetic datasets, Standford Tech. L. Rev., 2019, vol. 22, p. 1. Bellovin, S.M., Dutta, P.K., and Reitinger, N., Privacy and synthetic datasets, Standford Tech. L. Rev., 2019, vol. 22, p. 1.
19.
go back to reference Oshiro, T., Perez, P.S., and Baranauskas, J.A., How many trees in a random forest?, Machine Learning and Data Mining in Pattern Recognition. MLDM 2012, Perner, P., Ed., Lecture Notes in Computer Science, vol. 7376, Berlin: Springer, 2012, pp. 154–168. https://doi.org/10.1007/978-3-642-31537-4_13 Oshiro, T., Perez, P.S., and Baranauskas, J.A., How many trees in a random forest?, Machine Learning and Data Mining in Pattern Recognition. MLDM 2012, Perner, P., Ed., Lecture Notes in Computer Science, vol. 7376, Berlin: Springer, 2012, pp. 154–168. https://​doi.​org/​10.​1007/​978-3-642-31537-4_​13
20.
go back to reference Large-scale CelebFaces Attributes (CelebA) Dataset. https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html/. Cited February 22, 2022. Large-scale CelebFaces Attributes (CelebA) Dataset. https://​mmlab.​ie.​cuhk.​edu.​hk/​projects/​CelebA.​html/​.​ Cited February 22, 2022.
21.
go back to reference Hospital Discharge Data Public Use Data File. https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm/. Cited February 22, 2022. Hospital Discharge Data Public Use Data File. https://​www.​dshs.​texas.​gov/​THCIC/​Hospitals/​Download.​shtm/​.​ Cited February 22, 2022.
Metadata
Title
Generation of Synthetic Data for Honeypot Systems Using Deep Learning Methods
Authors
V. D. Danilov
T. D. Ovasapyan
D. V. Ivanov
A. S. Konoplev
D. A. Moskvin
Publication date
01-12-2022
Publisher
Pleiades Publishing
Published in
Automatic Control and Computer Sciences / Issue 8/2022
Print ISSN: 0146-4116
Electronic ISSN: 1558-108X
DOI
https://doi.org/10.3103/S014641162208003X

Other articles of this Issue 8/2022

Automatic Control and Computer Sciences 8/2022 Go to the issue