Skip to main content
Top
Published in:

17-05-2024 | Research

Generative Model-Driven Synthetic Training Image Generation: An Approach to Cognition in Railway Defect Detection

Authors: Rahatara Ferdousi, Chunsheng Yang, M. Anwar Hossain, Fedwa Laamarti, M. Shamim Hossain, Abdulmotaleb El Saddik

Published in: Cognitive Computation | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recent advancements in cognitive computing, through the integration of artificial intelligence (AI) techniques, have facilitated the development of intelligent cognitive systems (ICS). This benefits railway defect detection by enabling ICS to emulate human-like analysis of defect patterns in image data. Although visual defect classification based on convolutional neural networks (CNN) has achieved decent performance, the scarcity of large datasets for railway defect detection remains a challenge. This scarcity stems from the infrequent nature of accidents that result in defective railway parts. Existing research efforts have addressed the challenge of data scarcity by exploring rule-based and generative data augmentation approaches. Among these approaches, variational autoencoder (VAE) models can generate realistic data without the need for extensive baseline datasets for noise modeling. This study proposes a VAE-based synthetic image generation technique for training railway defect classifiers. Our approach introduces a modified regularization strategy that combines weight decay with reconstruction loss. Using this method, we created a synthetic dataset for the Canadian Pacific Railway (CPR), consisting of 50 real samples across five classes. Remarkably, our method generated 500 synthetic samples, achieving a minimal reconstruction loss of 0.021. A visual transformer (ViT) model, fine-tuned using this synthetic CPR dataset, achieved high accuracy rates (98–99%) in classifying the five railway defect classes. This research presents an approach that addresses the data scarcity issue in railway defect detection, indicating a path toward enhancing the development of ICS in this field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Gudivada VN, Pankanti S, Seetharaman G, Zhang Y. Cognitive computing systems: Their potential and the future. Comp. 2019;52(5):13–8. Gudivada VN, Pankanti S, Seetharaman G, Zhang Y. Cognitive computing systems: Their potential and the future. Comp. 2019;52(5):13–8.
4.
go back to reference Tabernik D, Sela S, Skvarˇc J, Skoˇcaj D. Deep-learning-based com-puter vision system for surface-defect detection. In: In Computer Vision Sys-tems: 12th International Conference, ICVS 2019, Thessaloniki, Greece, September 23–25, 2019, Proceedings 12. Springer; 2019. p. 490–500.CrossRef Tabernik D, Sela S, Skvarˇc J, Skoˇcaj D. Deep-learning-based com-puter vision system for surface-defect detection. In: In Computer Vision Sys-tems: 12th International Conference, ICVS 2019, Thessaloniki, Greece, September 23–25, 2019, Proceedings 12. Springer; 2019. p. 490–500.CrossRef
5.
go back to reference Ghaboura S, Ferdousi R, Laamarti F, Yang C, El Saddik A. Digital twin for railway: A comprehensive survey. IEEE Access. 2023;11:120237–57.CrossRef Ghaboura S, Ferdousi R, Laamarti F, Yang C, El Saddik A. Digital twin for railway: A comprehensive survey. IEEE Access. 2023;11:120237–57.CrossRef
6.
go back to reference Ferdousi R, Laamarti F, Yang C, El Saddik A. Railtwin: a digital twin framework for railway. In 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE). IEEE; 2022. p. 1767–72. Ferdousi R, Laamarti F, Yang C, El Saddik A. Railtwin: a digital twin framework for railway. In 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE). IEEE; 2022. p. 1767–72.
7.
go back to reference Yang C, Ferdousi R, El Saddik A, Li Y, Liu Z, Liao M. Lifetime learning-enabled modelling framework for digital twin. In: In 2022 IEEE 18th International Conference on Automa-tion Science and Engineering (CASE). 2022. p. 1761–6. Yang C, Ferdousi R, El Saddik A, Li Y, Liu Z, Liao M. Lifetime learning-enabled modelling framework for digital twin. In: In 2022 IEEE 18th International Conference on Automa-tion Science and Engineering (CASE). 2022. p. 1761–6.
8.
go back to reference Cui S, Wang H, Zhang M, Zhang X. Defect classification on lim-ited labeled samples with multiscale. Appl Intell. 2021;51(6):3911–25. Cui S, Wang H, Zhang M, Zhang X. Defect classification on lim-ited labeled samples with multiscale. Appl Intell. 2021;51(6):3911–25.
9.
go back to reference Alqudah R, Al-Mousa AA, Hashyeh YA, Alzaibaq OZ. A systemic comparison between using augmented data and syn-thetic data as means of enhancing wafermap defect classification. Comput Ind. 2023;145:103809.CrossRef Alqudah R, Al-Mousa AA, Hashyeh YA, Alzaibaq OZ. A systemic comparison between using augmented data and syn-thetic data as means of enhancing wafermap defect classification. Comput Ind. 2023;145:103809.CrossRef
11.
go back to reference Abufadda M, Mansour K. A survey of synthetic data generation for machine learning. In: In 2021 22nd international arab conference on information technology (ACIT). 2021. p. 1–7. Abufadda M, Mansour K. A survey of synthetic data generation for machine learning. In: In 2021 22nd international arab conference on information technology (ACIT). 2021. p. 1–7.
13.
go back to reference Zhang G, Cui K, Hung TY, Lu S. Defect-gan: High-fidelity defect synthesis for automated defect inspection. In: In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2021. p. 2524–34. Zhang G, Cui K, Hung TY, Lu S. Defect-gan: High-fidelity defect synthesis for automated defect inspection. In: In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2021. p. 2524–34.
14.
go back to reference Tevosyan A, Khondkaryan L, Khachatrian H, Tade-vosyan G, Apresyan L, Babayan N, Stopper H, Navoyan Z. Improving vae based molecular representations for compound property pre-diction. Journal of Cheminformatics. 2022;14(1):69.CrossRef Tevosyan A, Khondkaryan L, Khachatrian H, Tade-vosyan G, Apresyan L, Babayan N, Stopper H, Navoyan Z. Improving vae based molecular representations for compound property pre-diction. Journal of Cheminformatics. 2022;14(1):69.CrossRef
15.
go back to reference He X, Chang Z, Zhang L, Xu H, Chen H, Luo Z. A survey of de-fect detection applications based on generative adversarial networks. IEEE Access. 2022;10:113493–512.CrossRef He X, Chang Z, Zhang L, Xu H, Chen H, Luo Z. A survey of de-fect detection applications based on generative adversarial networks. IEEE Access. 2022;10:113493–512.CrossRef
16.
go back to reference Lu Y, Shen M, Wang H, Wang X, van Rechem C, Wei W. Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062, 2023. Lu Y, Shen M, Wang H, Wang X, van Rechem C, Wei W. Machine learning for synthetic data generation: a review. arXiv preprint arXiv:​2302.​04062, 2023.
17.
go back to reference Endres M, Mannarapotta Venugopal A, Tran TS. Syn-thetic data generation: a comparative study. In: In Proceedings of the 26th International Database Engineered Applications Symposium. 2022. p. 94–102.CrossRef Endres M, Mannarapotta Venugopal A, Tran TS. Syn-thetic data generation: a comparative study. In: In Proceedings of the 26th International Database Engineered Applications Symposium. 2022. p. 94–102.CrossRef
18.
go back to reference Pinheiro Cinelli L, Ara’ujo Marins M, Bar-ros da Silva EA, Lima Netto S. Variational autoencoder. In: In Varia-tional Methods for Machine Learning with Applications to Deep Networks. Springer; 2021. p. 111–49.CrossRef Pinheiro Cinelli L, Ara’ujo Marins M, Bar-ros da Silva EA, Lima Netto S. Variational autoencoder. In: In Varia-tional Methods for Machine Learning with Applications to Deep Networks. Springer; 2021. p. 111–49.CrossRef
19.
go back to reference Mak HWL, Han R, Yin HHF. Application of variational autoencoder (vae) model and image processing approaches in game design. Sensors. 2023;23(7):3457.CrossRef Mak HWL, Han R, Yin HHF.  Application of variational autoencoder (vae) model and image processing approaches in game design. Sensors. 2023;23(7):3457.CrossRef
20.
go back to reference Kumar T, Mileo A, Brennan R, Bendechache M. Image data augmentation approaches: A comprehensive survey. arXiv preprint arXiv:2301.02830, 2023. Kumar T, Mileo A, Brennan R, Bendechache M. Image data augmentation approaches: A comprehensive survey. arXiv preprint arXiv:​2301.​02830, 2023.
21.
go back to reference Wang R, Hoppe S, Monari E, Huber MF. De-fect transfer gan: Diverse defect synthesis for data augmentation. arXiv preprint arXiv:2302.08366, 2023. Wang R, Hoppe S, Monari E, Huber MF. De-fect transfer gan: Diverse defect synthesis for data augmentation. arXiv preprint arXiv:​2302.​08366, 2023.
22.
go back to reference Zhang G, Cui K, Hung TY, Lu S. Defect-gan: High-fidelity defect synthesis for automated defect inspection. arXiv preprint arXiv:2103.15158, 2021. Zhang G, Cui K, Hung TY, Lu S. Defect-gan: High-fidelity defect synthesis for automated defect inspection. arXiv preprint arXiv:​2103.​15158, 2021.
23.
go back to reference Jadon A, Kumar S. Leveraging generative ai models for synthetic data generation in healthcare: Balancing research and privacy. In: In 2023 International Conference on Smart Applications, Communications and Networking (SmartNets). IEEE; 2023. p. 1–4. Jadon A, Kumar S. Leveraging generative ai models for synthetic data generation in healthcare: Balancing research and privacy. In:  In 2023 International Conference on Smart Applications, Communications and Networking (SmartNets). IEEE; 2023. p. 1–4.
24.
go back to reference Wang Z, Healy G, Smeaton AF, Ward TE. Use of neural signals to evaluate the quality of generative adversarial network performance in facial image generation. Cogn Comp. 2020;12:13–24.CrossRef Wang Z, Healy G, Smeaton AF, Ward TE. Use of neural signals to evaluate the quality of generative adversarial network performance in facial image generation. Cogn Comp. 2020;12:13–24.CrossRef
25.
go back to reference Alpaydin E. Introduction to machine learning. MIT press, 2020. Alpaydin E. Introduction to machine learning. MIT press, 2020.
26.
go back to reference Shang H, Sun C, Liu J, Chen X, Yan R. Defect-aware transformer network for intelligent visual surface defect detection. Adv Eng Inform. 2023;55: 101882.CrossRef Shang H, Sun C, Liu J, Chen X, Yan R. Defect-aware transformer network for intelligent visual surface defect detection. Adv Eng Inform. 2023;55: 101882.CrossRef
27.
go back to reference Li J, Li D, Savarese S, Hoi S. Blip-2: Boot-strapping language-image pre-training with frozen image encoders and large language models. In: In International conference on machine learning. PMLR; 2023. p. 19730–42. Li J, Li D, Savarese S, Hoi S. Blip-2: Boot-strapping language-image pre-training with frozen image encoders and large language models. In: In International conference on machine learning. PMLR; 2023. p. 19730–42.
Metadata
Title
Generative Model-Driven Synthetic Training Image Generation: An Approach to Cognition in Railway Defect Detection
Authors
Rahatara Ferdousi
Chunsheng Yang
M. Anwar Hossain
Fedwa Laamarti
M. Shamim Hossain
Abdulmotaleb El Saddik
Publication date
17-05-2024
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10283-3

Premium Partner