Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

Generative Self-training for Cross-Domain Unsupervised Tagged-to-Cine MRI Synthesis

Authors : Xiaofeng Liu, Fangxu Xing, Maureen Stone, Jiachen Zhuo, Timothy Reese, Jerry L. Prince, Georges El Fakhri, Jonghye Woo

Published in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021

Publisher: Springer International Publishing

Abstract

Self-training based unsupervised domain adaptation (UDA) has shown great potential to address the problem of domain shift, when applying a trained deep learning model in a source domain to unlabeled target domains. However, while the self-training UDA has demonstrated its effectiveness on discriminative tasks, such as classification and segmentation, via the reliable pseudo-label selection based on the softmax discrete histogram, the self-training UDA for generative tasks, such as image synthesis, is not fully investigated. In this work, we propose a novel generative self-training (GST) UDA framework with continuous value prediction and regression objective for cross-domain image synthesis. Specifically, we propose to filter the pseudo-label with an uncertainty mask, and quantify the predictive confidence of generated images with practical variational Bayes learning. The fast test-time adaptation is achieved by a round-based alternative optimization scheme. We validated our framework on the tagged-to-cine magnetic resonance imaging (MRI) synthesis problem, where datasets in the source and target domains were acquired from different scanners or centers. Extensive validations were carried out to verify our framework against popular adversarial training UDA methods. Results show that our GST, with tagged MRI of test subjects in new target domains, improved the synthesis quality by a large margin, compared with the adversarial training UDA methods.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Footnotes
1
It can be rewritten as \(\mathop {\mathrm {min}}\limits _{\mathbf {w}}~ \mathcal {F}=\{\sum \limits _{{{t}}\in {{T}}}{\sum \limits _{n=1}^{N}} \frac{1}{\sigma ^2_{t,n}}||(\hat{y}_{t,n}-\tilde{y}_{t,n})m_{t,n}||^2_2+\beta (\sum \limits _{{{t}}\in {{T}}}{\sum \limits _{n=1}^{N}} \text {log} \sigma ^2_{t,n}-C)\}\). Since \(\beta ,C\ge 0\), an upper bound on \(\mathcal {F}\) can be obtained as \(\mathcal {F}\le \mathcal {L}_{reg}^t\).
 
Literature
1.
go back to reference Che, T., et al.: Deep verifier networks: verification of deep discriminative models with deep generative models. In: AAAI (2021) Che, T., et al.: Deep verifier networks: verification of deep discriminative models with deep generative models. In: AAAI (2021)
2.
go back to reference Cui, S., Wang, S., Zhuo, J., Su, C., Huang, Q., Tian, Q.: Gradually vanishing bridge for adversarial domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12455–12464 (2020) Cui, S., Wang, S., Zhuo, J., Su, C., Huang, Q., Tian, Q.: Gradually vanishing bridge for adversarial domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12455–12464 (2020)
3.
go back to reference Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Struct. Saf. 31(2), 105–112 (2009) CrossRef Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Struct. Saf. 31(2), 105–112 (2009) CrossRef
4.
go back to reference Fruehwirt, W., et al.: Bayesian deep neural networks for low-cost neurophysiological markers of Alzheimer’s disease severity. arXiv preprint arXiv:​1812.​04994 (2018) Fruehwirt, W., et al.: Bayesian deep neural networks for low-cost neurophysiological markers of Alzheimer’s disease severity. arXiv preprint arXiv:​1812.​04994 (2018)
5.
go back to reference Gal, Y., Ghahramani, Z.: Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv preprint arXiv:​1506.​02158 (2015) Gal, Y., Ghahramani, Z.: Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv preprint arXiv:​1506.​02158 (2015)
6.
go back to reference Grandvalet, Y., Bengio, Y.: Entropy regularization (2006) Grandvalet, Y., Bengio, Y.: Entropy regularization (2006)
7.
go back to reference Han, L., Zou, Y., Gao, R., Wang, L., Metaxas, D.: Unsupervised domain adaptation via calibrating uncertainties. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 99–102 (2019) Han, L., Zou, Y., Gao, R., Wang, L., Metaxas, D.: Unsupervised domain adaptation via calibrating uncertainties. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 99–102 (2019)
9.
go back to reference Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125–1134 (2017) Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125–1134 (2017)
10.
go back to reference Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. Med. Image Anal. 68, 101907 (2021) CrossRef Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. Med. Image Anal. 68, 101907 (2021) CrossRef
11.
12.
go back to reference Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: Advances in Neural Information Processing Systems, pp. 1189–1197 (2010) Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: Advances in Neural Information Processing Systems, pp. 1189–1197 (2010)
13.
go back to reference Le, Q.V., Smola, A.J., Canu, S.: Heteroscedastic Gaussian process regression. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 489–496 (2005) Le, Q.V., Smola, A.J., Canu, S.: Heteroscedastic Gaussian process regression. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 489–496 (2005)
14.
go back to reference Liu, X., et al.: Unimodal regularized neuron stick-breaking for ordinal classification. Neurocomputing 388, 34–44 (2020) CrossRef Liu, X., et al.: Unimodal regularized neuron stick-breaking for ordinal classification. Neurocomputing 388, 34–44 (2020) CrossRef
15.
go back to reference Liu, X., et al.: Domain generalization under conditional and label shifts via variational Bayesian inference. In: IJCAI (2021) Liu, X., et al.: Domain generalization under conditional and label shifts via variational Bayesian inference. In: IJCAI (2021)
16.
go back to reference Liu, X., Hu, B., Liu, X., Lu, J., You, J., Kong, L.: Energy-constrained self-training for unsupervised domain adaptation. In: ICPR (2020) Liu, X., Hu, B., Liu, X., Lu, J., You, J., Kong, L.: Energy-constrained self-training for unsupervised domain adaptation. In: ICPR (2020)
17.
go back to reference Liu, X., et al.: Subtype-aware unsupervised domain adaptation for medical diagnosis. In: AAAI (2021) Liu, X., et al.: Subtype-aware unsupervised domain adaptation for medical diagnosis. In: AAAI (2021)
18.
go back to reference Liu, X., Xing, F., Yang, C., El Fakhri, G., Woo, J.: Adapting off-the-shelf source segmenter for target medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021, LNCS 12902, pp. 549–559. Springer, Cham (2021) Liu, X., Xing, F., Yang, C., El Fakhri, G., Woo, J.: Adapting off-the-shelf source segmenter for target medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021, LNCS 12902, pp. 549–559. Springer, Cham (2021)
19.
go back to reference Liu, X., Xing, F., El Fakhri, G., Woo, J.: A unified conditional disentanglement framework for multimodal brain MR image translation. In: ISBI, pp. 10–14. IEEE (2021) Liu, X., Xing, F., El Fakhri, G., Woo, J.: A unified conditional disentanglement framework for multimodal brain MR image translation. In: ISBI, pp. 10–14. IEEE (2021)
20.
go back to reference Liu, X., et al.: Dual-cycle constrained bijective VAE-GAN for tagged-to-cine magnetic resonance image synthesis. In: ISBI (2021) Liu, X., et al.: Dual-cycle constrained bijective VAE-GAN for tagged-to-cine magnetic resonance image synthesis. In: ISBI (2021)
24.
go back to reference Nix, D.A., Weigend, A.S.: Estimating the mean and variance of the target probability distribution. In: Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN 1994), vol. 1, pp. 55–60. IEEE (1994) Nix, D.A., Weigend, A.S.: Estimating the mean and variance of the target probability distribution. In: Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN 1994), vol. 1, pp. 55–60. IEEE (1994)
27.
go back to reference Tang, K., Ramanathan, V., Fei-Fei, L., Koller, D.: Shifting weights: adapting object detectors from image to video. In: NIPS (2012) Tang, K., Ramanathan, V., Fei-Fei, L., Koller, D.: Shifting weights: adapting object detectors from image to video. In: NIPS (2012)
28.
go back to reference Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR (2017) Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR (2017)
29.
go back to reference Wang, J., et al.: Automated interpretation of congenital heart disease from multi-view echocardiograms. Med. Image Anal. 69, 101942 (2021) CrossRef Wang, J., et al.: Automated interpretation of congenital heart disease from multi-view echocardiograms. Med. Image Anal. 69, 101942 (2021) CrossRef
30.
go back to reference Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018) CrossRef Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018) CrossRef
31.
go back to reference Wei, C., Shen, K., Chen, Y., Ma, T.: Theoretical analysis of self-training with deep networks on unlabeled data. arXiv preprint arXiv:​2010.​03622 (2021) Wei, C., Shen, K., Chen, Y., Ma, T.: Theoretical analysis of self-training with deep networks on unlabeled data. arXiv preprint arXiv:​2010.​03622 (2021)
32.
go back to reference Zhu, X.: Semi-supervised learning tutorial. In: ICML Tutorial (2007) Zhu, X.: Semi-supervised learning tutorial. In: ICML Tutorial (2007)
33.
go back to reference Zou, Y., Yu, Z., Liu, X., Kumar, B., Wang, J.: Confidence regularized self-training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5982–5991 (2019) Zou, Y., Yu, Z., Liu, X., Kumar, B., Wang, J.: Confidence regularized self-training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5982–5991 (2019)
Metadata
Title
Generative Self-training for Cross-Domain Unsupervised Tagged-to-Cine MRI Synthesis
Authors
Xiaofeng Liu
Fangxu Xing
Maureen Stone
Jiachen Zhuo
Timothy Reese
Jerry L. Prince
Georges El Fakhri
Jonghye Woo
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-87199-4_13

Premium Partner