Skip to main content
Top
Published in:

30-08-2021

Genetic Algorithms in the Fields of Artificial Intelligence and Data Sciences

Author: Ayesha Sohail

Published in: Annals of Data Science | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the fields of engineering and data sciences, the optimization problems arise on regular basis. With the progress in the field of scientific computing and research, the optimization is not a problem for small data sets and lower dimensional problems. The problem arise, when the data is large, stochastic in nature, and/or multidimensional. The basic optimization tools fail for such problems due to the complexity. The genetic algorithms, based on the natural selection hypothesis, play an imperative role to deal with such complex problems. Genetic algorithms are used in the literature to optimize numerous problems. In the field of computational biology, these algorithms have provided cost effective solutions to find optimal values for large data sets. The genetic algorithms have been used for image reconstruction. These algorithms are based on sub-algorithms to improve the accuracy and precision. We will discuss the advanced genetic algorithms and their applications in detail. Genetic algorithm, in hybrid form have attracted interest of researchers from almost all fields, including computer science, applied mathematics, engineering and computational biology. These tools help to analyze the systems in a swift manner. This important feature is discussed with the aid of examples. The time series forecasting and the Bayesian inference, in combination with the genetic algorithms, can prove to be powerful artificial intelligence tools. We will discuss this important aspect in detail with the aid of some examples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference AbuJarad MH, Khan AA, Khaleel MA, AbuJarad ES, AbuJarad AH, Oguntunde PE (2020) Bayesian reliability analysis of Marshall and Olkin model. Ann Data Sci 7(3):461–489CrossRef AbuJarad MH, Khan AA, Khaleel MA, AbuJarad ES, AbuJarad AH, Oguntunde PE (2020) Bayesian reliability analysis of Marshall and Olkin model. Ann Data Sci 7(3):461–489CrossRef
2.
go back to reference Gramaje A, Thabtah F, Abdelhamid N, Ray SK (2019) Patient discharge classification using machine learning techniques. Ann Data Sci 1–13 Gramaje A, Thabtah F, Abdelhamid N, Ray SK (2019) Patient discharge classification using machine learning techniques. Ann Data Sci 1–13
3.
go back to reference Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining, vol 10. McGraw-Hill/Irwin, New York Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining, vol 10. McGraw-Hill/Irwin, New York
4.
go back to reference Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef
5.
go back to reference Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178CrossRef Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178CrossRef
6.
go back to reference Sohail A (2019) Inference of biomedical data sets using Bayesian machine learning. Biomed Eng Appl Basis Commun 31:1950030CrossRef Sohail A (2019) Inference of biomedical data sets using Bayesian machine learning. Biomed Eng Appl Basis Commun 31:1950030CrossRef
7.
go back to reference Iftikhar M, Sohail A, Ahmad N (2019) Deterministic and stochastic analysis of dengue spread model. Biomed Eng (Singapore) 31:1950008 Iftikhar M, Sohail A, Ahmad N (2019) Deterministic and stochastic analysis of dengue spread model. Biomed Eng (Singapore) 31:1950008
8.
go back to reference Sohail A, Idrees M, Sajjad M, Iftikhar S, Tunc S (2020) Computational framework to explore impact of environmental stress on epidemics. Biomed Eng (Singapore) 32:2050047 Sohail A, Idrees M, Sajjad M, Iftikhar S, Tunc S (2020) Computational framework to explore impact of environmental stress on epidemics. Biomed Eng (Singapore) 32:2050047
9.
go back to reference Yu Z, Sohail A, Nutini A, Arif R (2020) Delayed modeling approach to forecast the periodic behaviour of sars-2. Front Mol Biosci 7:386 Yu Z, Sohail A, Nutini A, Arif R (2020) Delayed modeling approach to forecast the periodic behaviour of sars-2. Front Mol Biosci 7:386
10.
go back to reference Yu Z, Ellahi R, Nutini A, Sohail A, Sait SM (2021) Modeling and simulations of CoViD-19 molecular mechanism induced by cytokines storm during SARS-CoV2 infection. J Mol Liq 327:114863CrossRef Yu Z, Ellahi R, Nutini A, Sohail A, Sait SM (2021) Modeling and simulations of CoViD-19 molecular mechanism induced by cytokines storm during SARS-CoV2 infection. J Mol Liq 327:114863CrossRef
11.
go back to reference Yu Z, Arif R, Fahmy MA, Sohail A (2021) Self organizing maps for the parametric analysis of COVID-19 SEIRS delayed model. Chaos Solitons Fractals 150:111202CrossRef Yu Z, Arif R, Fahmy MA, Sohail A (2021) Self organizing maps for the parametric analysis of COVID-19 SEIRS delayed model. Chaos Solitons Fractals 150:111202CrossRef
12.
go back to reference El-Mihoub TA, Hopgood AA, Nolle L, Battersby A (2006) Hybrid genetic algorithms: a review. Eng Lett 13(2):124 El-Mihoub TA, Hopgood AA, Nolle L, Battersby A (2006) Hybrid genetic algorithms: a review. Eng Lett 13(2):124
13.
go back to reference Drezner Z, Drezner TD (2020) Biologically inspired parent selection in genetic algorithms. Ann Oper Res 287(1):161CrossRef Drezner Z, Drezner TD (2020) Biologically inspired parent selection in genetic algorithms. Ann Oper Res 287(1):161CrossRef
14.
go back to reference Khashei M, Bijari M (2011) A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl Soft Comput 11(2):2664CrossRef Khashei M, Bijari M (2011) A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl Soft Comput 11(2):2664CrossRef
15.
go back to reference Sundararajan PK, Mengshoel OJ (2016) A genetic algorithm for learning parameters in Bayesian networks using expectation maximization. In: Conference on probabilistic graphical models, vol 1, p 511. PMLR Sundararajan PK, Mengshoel OJ (2016) A genetic algorithm for learning parameters in Bayesian networks using expectation maximization. In: Conference on probabilistic graphical models, vol 1, p 511. PMLR
16.
go back to reference Das AK, Sengupta S, Bhattacharyya S (2018) A group incremental feature selection for classification using rough set theory based genetic algorithm. Appl Soft Comput 65:400CrossRef Das AK, Sengupta S, Bhattacharyya S (2018) A group incremental feature selection for classification using rough set theory based genetic algorithm. Appl Soft Comput 65:400CrossRef
17.
go back to reference Zhang BT (2000) Bayesian methods for efficient genetic programming. Genet Program Evolvable Mach 1(3):217CrossRef Zhang BT (2000) Bayesian methods for efficient genetic programming. Genet Program Evolvable Mach 1(3):217CrossRef
18.
go back to reference Chen N, Xiong C, Du W, Wang C, Lin X, Chen Z (2019) An improved genetic algorithm coupling a back-propagation neural network model (IGA-BPNN) for water-level predictions. Water 11(9):1795CrossRef Chen N, Xiong C, Du W, Wang C, Lin X, Chen Z (2019) An improved genetic algorithm coupling a back-propagation neural network model (IGA-BPNN) for water-level predictions. Water 11(9):1795CrossRef
19.
go back to reference Sun Y, Xue B, Zhang M, Yen GG, Lv J (2020) Automatically designing CNN architectures using the genetic algorithm for image classification. IEEE Trans Cybern 50(9):3854CrossRef Sun Y, Xue B, Zhang M, Yen GG, Lv J (2020) Automatically designing CNN architectures using the genetic algorithm for image classification. IEEE Trans Cybern 50(9):3854CrossRef
20.
go back to reference Lin H, Yang C, Xu X (2020) A new optimization model of CCHP system based on genetic algorithm. Sustain Cities Soc 52(101811):101811CrossRef Lin H, Yang C, Xu X (2020) A new optimization model of CCHP system based on genetic algorithm. Sustain Cities Soc 52(101811):101811CrossRef
Metadata
Title
Genetic Algorithms in the Fields of Artificial Intelligence and Data Sciences
Author
Ayesha Sohail
Publication date
30-08-2021
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science / Issue 4/2023
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-021-00354-9

Premium Partner