Skip to main content
Top
Published in: Environmental Management 5/2008

01-05-2008

Genotypic Variation in the Phytoremediation Potential of Indian Mustard for Chromium

Authors: Hema Diwan, Altaf Ahmad, Muhammad Iqbal

Published in: Environmental Management | Issue 5/2008

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The term “phytoremediation” is used to describe the cleanup of heavy metals from contaminated sites by plants. This study demonstrates phytoremediation potential of Indian mustard (Brasicca juncea (L.) Czern. & Coss.) genotypes for chromium (Cr). Seedlings of 10 genotypes were grown hydroponically in artificially contaminated water over a range of environmentally relevant concentrations of Cr (VI), and the responses of genotypes in the presence of Cr, with reference to Cr accumulation, its phytotoxity and anti-oxidative system were investigated. The Cr accumulation potential varied largely among Indian mustard genotypes. At 100 μM Cr treatment, Pusa Jai Kisan accumulated the maximum amount of Cr (1680 μg Cr g−1 DW) whereas Vardhan accumulated the minimum (107 μg Cr g−1 DW). As the tolerance of metals is a key plant characteristic required for phytoremediation purpose, effects of various levels of Cr on biomass were evaluated as the gross effect. The extent of oxidative stress caused by Cr stress was measured as rate of lipid peroxidation. The level of thiobarbituric acid reactive substances (TBARS) was enhanced at all Cr treatments when compared to the control. Inductions of enzymatic and nonenzymatic antioxidants were monitored as metal-detoxifying responses. All the genotypes responded to Cr-induced oxidative stress by modulating nonenzymatic antioxidants [glutathione (GSH) and ascorbate (Asc)] and enzymatic antioxidants [superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR)]. The level of induction, however, differed among the genotypes, being at its maximum in Pusa Jai Kisan and its minimum in Vardhan. Pusa Jai Kisan was grown under natural field conditions with various Cr treatments, and Cr-accumulation capacity was studied. The results confirmed that Pusa Jai Kisan is a hyperaccumulator of Cr and hypertolerant to Cr-induced stress, which makes this genotype a viable candidate for use in the development of phytoremediation technology of Cr-contaminated sites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods in Enzymology 113:548–554CrossRef Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods in Enzymology 113:548–554CrossRef
go back to reference Asada K (1992) Ascorbate peroxidase – a hydrogen peroxide scavenging enzyme in plants. Physiologia Plantarum 85:235–241CrossRef Asada K (1992) Ascorbate peroxidase – a hydrogen peroxide scavenging enzyme in plants. Physiologia Plantarum 85:235–241CrossRef
go back to reference Baker AJM, Brooks RR (1989) Terrestrial higher plants that hyperaccumulate metallic elements - a review of their distribution ecology and phytochemistry. Biorecovery 1:81–126 Baker AJM, Brooks RR (1989) Terrestrial higher plants that hyperaccumulate metallic elements - a review of their distribution ecology and phytochemistry. Biorecovery 1:81–126
go back to reference Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Baelos G (eds), Phytoremediation of Contaminated Soil and Water. Lewis Publication, Boca Raton, Florida, USA. pp 85–107 Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Baelos G (eds), Phytoremediation of Contaminated Soil and Water. Lewis Publication, Boca Raton, Florida, USA. pp 85–107
go back to reference Bartlett RJ (1991) Chromium cycling in soil and water: links gaps and methods. Environmental Health Perspectives 92:14–24CrossRef Bartlett RJ (1991) Chromium cycling in soil and water: links gaps and methods. Environmental Health Perspectives 92:14–24CrossRef
go back to reference Baudo R, Canzian E, Galanti G, Guilizzoni P, Rapetti G (1985) Relationships between heavy metals and aquatic organisms in lake Mezzola hydrographic system (northern Italy). IV: metal concentrations in two species of emergent macrophytes. Memorie dell’Istituto Italiano di Idrobiologia 43:161–180 Baudo R, Canzian E, Galanti G, Guilizzoni P, Rapetti G (1985) Relationships between heavy metals and aquatic organisms in lake Mezzola hydrographic system (northern Italy). IV: metal concentrations in two species of emergent macrophytes. Memorie dell’Istituto Italiano di Idrobiologia 43:161–180
go back to reference Beyer WF, Fridovich Y (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry 61:559–566CrossRef Beyer WF, Fridovich Y (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry 61:559–566CrossRef
go back to reference Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities protein utilizing the principle of protein dye binding. Analytical Biochemistry 72:248–254CrossRef Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities protein utilizing the principle of protein dye binding. Analytical Biochemistry 72:248–254CrossRef
go back to reference Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thalpsi caerulescence and bladder champion for zinc and cadmium contaminated soil. Journal of Environmental Quality 23:1151–1157CrossRef Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thalpsi caerulescence and bladder champion for zinc and cadmium contaminated soil. Journal of Environmental Quality 23:1151–1157CrossRef
go back to reference Cao X, Ma LQ, Tu C (2004) Antioxidant responses to arsenic in the arsenic hyperaccumulator Chinese brake fern (Pteris vittata). Environmental Pollution 128:317–325CrossRef Cao X, Ma LQ, Tu C (2004) Antioxidant responses to arsenic in the arsenic hyperaccumulator Chinese brake fern (Pteris vittata). Environmental Pollution 128:317–325CrossRef
go back to reference Cochram WG, Cox GM (1957) Experimental Designs. Willey, New York Cochram WG, Cox GM (1957) Experimental Designs. Willey, New York
go back to reference EPA, USA (Environmental Protection Agency, United States of America). (1984) Health assessment for chromium. Final Report, EPA Publication No. EPA–600/8-83-014F, US Environment Protection Agency, Washington, DC EPA, USA (Environmental Protection Agency, United States of America). (1984) Health assessment for chromium. Final Report, EPA Publication No. EPA–600/8-83-014F, US Environment Protection Agency, Washington, DC
go back to reference Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25CrossRef Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25CrossRef
go back to reference Freeman JI, Prsans MW, Nieman K, Albrecht C, Peer W, Picering I, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thalpsi nickel hyperaccumulator. Plant Cell 16:2176–2191CrossRef Freeman JI, Prsans MW, Nieman K, Albrecht C, Peer W, Picering I, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thalpsi nickel hyperaccumulator. Plant Cell 16:2176–2191CrossRef
go back to reference Gardea-Torresday JL, De la Rosa G, Peralta-Videa JR, Montes M, Cruz-Jimenez G, Cano-Aguilera I (2005) Differential uptake and transport of trivalent and hexavalent chromium by Tumbleweed (Salsola kali). Archives Environmental Contamination Toxicology 48:225–232CrossRef Gardea-Torresday JL, De la Rosa G, Peralta-Videa JR, Montes M, Cruz-Jimenez G, Cano-Aguilera I (2005) Differential uptake and transport of trivalent and hexavalent chromium by Tumbleweed (Salsola kali). Archives Environmental Contamination Toxicology 48:225–232CrossRef
go back to reference Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology 32:481–494CrossRef Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology 32:481–494CrossRef
go back to reference Haag-Kerwer A, Schafer HJ, Heiss S, Walter C, Rausch T (1999) Cadmium exposure in Brassica juncea causes decline in transpiration rate and leaf expansion without effect on photosynthesis. Journal of Experimental Botany 50:1827–1835CrossRef Haag-Kerwer A, Schafer HJ, Heiss S, Walter C, Rausch T (1999) Cadmium exposure in Brassica juncea causes decline in transpiration rate and leaf expansion without effect on photosynthesis. Journal of Experimental Botany 50:1827–1835CrossRef
go back to reference Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Achieves of Biochemistry and Biophysics 125:189–198CrossRef Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Achieves of Biochemistry and Biophysics 125:189–198CrossRef
go back to reference Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997) Antioxidant enzyme and compound responses to chilling stress and their combining abilities in differentially sensitive maize hybrids. Crop Science 37:857–863CrossRef Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997) Antioxidant enzyme and compound responses to chilling stress and their combining abilities in differentially sensitive maize hybrids. Crop Science 37:857–863CrossRef
go back to reference IARC (International Agency for Research on Cancer) (1980) Chromium and chromium compounds. IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. Vol 23, International Agency for Research on Cancer Lyon, France. pp 205–323 IARC (International Agency for Research on Cancer) (1980) Chromium and chromium compounds. IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. Vol 23, International Agency for Research on Cancer Lyon, France. pp 205–323
go back to reference Israr M, Sahi SV, Jain J (2006) Cadmium accumulation and antioxidative responses in the Sesbania drumondiiallus. Archives of Environmental Contamination and Toxicology 50:121–127CrossRef Israr M, Sahi SV, Jain J (2006) Cadmium accumulation and antioxidative responses in the Sesbania drumondiiallus. Archives of Environmental Contamination and Toxicology 50:121–127CrossRef
go back to reference Metwally A, Safronova, Belimov A, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany 56:167–178 Metwally A, Safronova, Belimov A, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany 56:167–178
go back to reference Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22:867–880 Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22:867–880
go back to reference Nriagu JO (1990) Trace metal pollution of lakes: a global perspective In: Proceeding of 2nd International Conference on Trace Metals in Aquatic Environment. November 1990, Sydney, Australia Nriagu JO (1990) Trace metal pollution of lakes: a global perspective In: Proceeding of 2nd International Conference on Trace Metals in Aquatic Environment. November 1990, Sydney, Australia
go back to reference Pandey V, Dixit V, Shyam R (2005) Antioxidative responses in elation to growth of mustard (Brassica juncea cv. Pusa Jai Kisan) plants exposed to hexavalent chromium. Chemosphere 61:40–47CrossRef Pandey V, Dixit V, Shyam R (2005) Antioxidative responses in elation to growth of mustard (Brassica juncea cv. Pusa Jai Kisan) plants exposed to hexavalent chromium. Chemosphere 61:40–47CrossRef
go back to reference Qureshi MI, Israr M, Abdin MZ, Iqbal M (2005) Responses of Artemisia annua L. to lead and salt induced oxidative stress. Environmental and Experimental Botany 53:185–193CrossRef Qureshi MI, Israr M, Abdin MZ, Iqbal M (2005) Responses of Artemisia annua L. to lead and salt induced oxidative stress. Environmental and Experimental Botany 53:185–193CrossRef
go back to reference Rao MV (1992) Cellular detoxification mechanisms to determine age dependent injury in tropical plants exposed to SO2. Journal of Plant Physiology 140:733–740 Rao MV (1992) Cellular detoxification mechanisms to determine age dependent injury in tropical plants exposed to SO2. Journal of Plant Physiology 140:733–740
go back to reference Salt DE, Kramer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley BD (eds), Phytoremediation of Toxic Metals Using Plants to Clean Up the Environment. Wiley, New York. pp 231–237 Salt DE, Kramer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley BD (eds), Phytoremediation of Toxic Metals Using Plants to Clean Up the Environment. Wiley, New York. pp 231–237
go back to reference Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environmental International 31:739–753CrossRef Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environmental International 31:739–753CrossRef
go back to reference Sinha S, Saxena R, Singh S (2002) Comparative study on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants: its toxic effects. Chemosphere 80:17–31 Sinha S, Saxena R, Singh S (2002) Comparative study on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants: its toxic effects. Chemosphere 80:17–31
go back to reference Swaminathan MS (2003) Biodiversity: an effective safety net against environmental pollution. Environmental Pollution 126:287–291CrossRef Swaminathan MS (2003) Biodiversity: an effective safety net against environmental pollution. Environmental Pollution 126:287–291CrossRef
go back to reference WHO (World Health Organization) (1988) Chromium. Environmental Health Criteria 61, World Health Organisation, Geneva WHO (World Health Organization) (1988) Chromium. Environmental Health Criteria 61, World Health Organisation, Geneva
go back to reference Yamaguchi K, Mori H, Nishimura M (1995) A novel enzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant and Cell Physiology 36:1157–1162 Yamaguchi K, Mori H, Nishimura M (1995) A novel enzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant and Cell Physiology 36:1157–1162
go back to reference Yang X, Jin X, Feng Y, Islam E (2005) Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. Journal of Integrative Plant Biology 47:1025–1035CrossRef Yang X, Jin X, Feng Y, Islam E (2005) Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. Journal of Integrative Plant Biology 47:1025–1035CrossRef
go back to reference Zhang X, Liu J, Huang H, Chen J, Zhu Y, Wang D (2007) Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 67:1138–1143CrossRef Zhang X, Liu J, Huang H, Chen J, Zhu Y, Wang D (2007) Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 67:1138–1143CrossRef
Metadata
Title
Genotypic Variation in the Phytoremediation Potential of Indian Mustard for Chromium
Authors
Hema Diwan
Altaf Ahmad
Muhammad Iqbal
Publication date
01-05-2008
Publisher
Springer-Verlag
Published in
Environmental Management / Issue 5/2008
Print ISSN: 0364-152X
Electronic ISSN: 1432-1009
DOI
https://doi.org/10.1007/s00267-007-9020-3

Other articles of this Issue 5/2008

Environmental Management 5/2008 Go to the issue