Skip to main content
Top
Published in: Acta Mechanica 10/2020

23-07-2020 | Original Paper

Geometrically nonlinear Euler–Bernoulli and Timoshenko micropolar beam theories

Authors: Praneeth Nampally, J. N. Reddy

Published in: Acta Mechanica | Issue 10/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Two ways of incorporating moderate rotations of planes normal to the axis of a straight beam into the Euler–Bernoulli and the Timoshenko micropolar beam theories are presented. In the first case, the von Kármán nonlinear strains are used to incorporate the moderate rotations of normal planes into the beam theories. In the second case, appropriate approximations are made on the nonlinear Cosserat deformation gradient to reflect the condition of moderate rotations of the normal planes. The governing nonlinear differential equations and corresponding natural boundary conditions in both cases are derived using the principle of virtual displacements. A weak-form Galerkin displacement finite element formulation is presented for the developed nonlinear beam theories. The phenomenon of locking usually encountered in beam displacement finite elements is eliminated using higher-order finite elements with nodes located at spectral points. Finally, numerical examples are presented to illustrate the effect of coupling number and bending characteristic length scale on deflections and microrotations when a micropolar beam is modeled with the developed nonlinear beam theories.
Appendix
Available only for authorised users
Footnotes
1
We use superscript E to denote terms corresponding to the Euler–Bernoulli micropolar beam theory.
 
2
We use superscript T to denote terms corresponding to the Timoshenko micropolar beam theory.
 
3
GLL points are proven to be effective in eliminating the Runge effect in Lagrange interpolation functions, however that is not guaranteed for Hermite interpolation functions. In the present work, we used a maximum of 8 nodes per element, located at spectral points and no Runge effect was observed for Hermite interpolation functions used in Euler–Bernoulli micropolar beam theories.
 
Literature
1.
go back to reference Ansari, R., Gholami, R., Sahmani, S.: Free vibration analysis of size dependent functionally graded microbeams based on the strain gradient Timoshenk beam theory. Compos. Struct. 94(1), 221–228 (2011) Ansari, R., Gholami, R., Sahmani, S.: Free vibration analysis of size dependent functionally graded microbeams based on the strain gradient Timoshenk beam theory. Compos. Struct. 94(1), 221–228 (2011)
2.
go back to reference Ansari, R., Shakouri, A.H., Bazdid-Vahdti, M., Norouzzadeh, A.H.R.: A nonclassical finite element approach for the nonlinear analysis of micropolar plates. J. Comput. Nonlinear Dyn. 12(1), 011019 (2017) Ansari, R., Shakouri, A.H., Bazdid-Vahdti, M., Norouzzadeh, A.H.R.: A nonclassical finite element approach for the nonlinear analysis of micropolar plates. J. Comput. Nonlinear Dyn. 12(1), 011019 (2017)
3.
go back to reference Arbind, A., Reddy, J.N., Srinivasa, A.R.: Modifed couple stress-based third-order theory for nonlinear analysis of functionally graded beams. Lat. Am. J. Solids Struct. 11(3), 459–487 (2014) Arbind, A., Reddy, J.N., Srinivasa, A.R.: Modifed couple stress-based third-order theory for nonlinear analysis of functionally graded beams. Lat. Am. J. Solids Struct. 11(3), 459–487 (2014)
4.
go back to reference Bathe, K.J.: Finite Element Procedures. Prentice Hall, Upper Saddle River (1996)MATH Bathe, K.J.: Finite Element Procedures. Prentice Hall, Upper Saddle River (1996)MATH
5.
go back to reference Bauchau, O.A., Craig, J.I.: Structural Analysis: With Applications to Aerospace Structures, vol. 163. Springer, Berlin (2009) Bauchau, O.A., Craig, J.I.: Structural Analysis: With Applications to Aerospace Structures, vol. 163. Springer, Berlin (2009)
6.
go back to reference Chowdhury, S.R., Reddy, J.N.: Geometrically exact micropolar Timoshenko beam and its application in modelling sandwich beams made of architected lattice core. Compos. Struct. 226, 111228 (2019) Chowdhury, S.R., Reddy, J.N.: Geometrically exact micropolar Timoshenko beam and its application in modelling sandwich beams made of architected lattice core. Compos. Struct. 226, 111228 (2019)
7.
go back to reference Cosserat, E., Cosserat, F.: Théorie des corps déformables. A. Hermann et fils (1909) Cosserat, E., Cosserat, F.: Théorie des corps déformables. A. Hermann et fils (1909)
8.
go back to reference Ding, N., Xu, X., Zheng, Z.: A size-dependent nonlinear microbeam model based on the micropolar elasticity theory. Acta Mech. 227(12), 3497–3515 (2016)MathSciNetMATH Ding, N., Xu, X., Zheng, Z.: A size-dependent nonlinear microbeam model based on the micropolar elasticity theory. Acta Mech. 227(12), 3497–3515 (2016)MathSciNetMATH
9.
go back to reference Dos Reis, F., Ganghoffer, J.F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112–113, 354–363 (2012) Dos Reis, F., Ganghoffer, J.F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112–113, 354–363 (2012)
10.
go back to reference Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer Briefs in Applied Sciences and Technology-Continuum Mechanics. Springer, Berlin (2013)MATH Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer Briefs in Applied Sciences and Technology-Continuum Mechanics. Springer, Berlin (2013)MATH
11.
go back to reference Eremeyev, V.A., Skrzat, A., Stachowicz, F.: On finite element computations of contact problems in micropolar elasticity. Adv. Mater. Sci. Eng. 2016, 433–447 (2016) Eremeyev, V.A., Skrzat, A., Stachowicz, F.: On finite element computations of contact problems in micropolar elasticity. Adv. Mater. Sci. Eng. 2016, 433–447 (2016)
12.
go back to reference Eringen, A.C.: Microcontinuum Field Theories: I. Foundations and Solids. Springer, Berlin (2012)MATH Eringen, A.C.: Microcontinuum Field Theories: I. Foundations and Solids. Springer, Berlin (2012)MATH
13.
go back to reference Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids, i and ii. Int. J. Eng. Sci. 2(2), 189–203 (1964)MATH Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids, i and ii. Int. J. Eng. Sci. 2(2), 189–203 (1964)MATH
14.
go back to reference Fan, S., Cheng, Z.: A micropolar model for elastic properties in functionally graded materials. Adv. Mech. Eng. 10(8), 168781401878952 (2018) Fan, S., Cheng, Z.: A micropolar model for elastic properties in functionally graded materials. Adv. Mech. Eng. 10(8), 168781401878952 (2018)
15.
go back to reference Huang, F.Y., Yan, B.H., Yan, J.L., Yang, D.U.: Bending analysis of micropolar elastic beam using a 3-D finite element method. Int. J. Eng. Sci. 38(3), 275–286 (2000)MATH Huang, F.Y., Yan, B.H., Yan, J.L., Yang, D.U.: Bending analysis of micropolar elastic beam using a 3-D finite element method. Int. J. Eng. Sci. 38(3), 275–286 (2000)MATH
16.
go back to reference Ivanova, E.A., Krivtsov, A.M., Morozov, N.F.: Inclusion of the moment interaction in the calculation of the flexural rigidity of nanostructures. Dokl. Phys. 48, 455–458 (2003) Ivanova, E.A., Krivtsov, A.M., Morozov, N.F.: Inclusion of the moment interaction in the calculation of the flexural rigidity of nanostructures. Dokl. Phys. 48, 455–458 (2003)
17.
go back to reference Kafadar, C.B., Eringen, A.C.: Micropolar media—I the classical theory. Int. J. Eng. Sci. 9(3), 271–305 (1971a)MATH Kafadar, C.B., Eringen, A.C.: Micropolar media—I the classical theory. Int. J. Eng. Sci. 9(3), 271–305 (1971a)MATH
18.
go back to reference Kafadar, C.B., Eringen, A.C.: Micropolar media—II the relativisitc theory. Int. J. Eng. Sci. 9(3), 307–329 (1971b)MATH Kafadar, C.B., Eringen, A.C.: Micropolar media—II the relativisitc theory. Int. J. Eng. Sci. 9(3), 307–329 (1971b)MATH
19.
go back to reference Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M., Ahmadian, M.T.: A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. 49(11), 1256–1267 (2011)MathSciNetMATH Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M., Ahmadian, M.T.: A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. 49(11), 1256–1267 (2011)MathSciNetMATH
20.
go back to reference Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for CFD. Oxford University Press, Oxford (1999)MATH Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for CFD. Oxford University Press, Oxford (1999)MATH
21.
go back to reference Karttunen, A.T., Reddy, J.N., Romanoff, J.: Two-scale micropolar plate model for web-core sandwich panels. Int. J. Solids Struct. 170, 82–94 (2019) Karttunen, A.T., Reddy, J.N., Romanoff, J.: Two-scale micropolar plate model for web-core sandwich panels. Int. J. Solids Struct. 170, 82–94 (2019)
22.
go back to reference Khodabakhshi, P., Reddy, J.N.: A unified beam theory with strain gradient effect and the von kármán nonlinearity. ZAMM J. Appl. Math. Mech. 97(1), 70–91 (2017) Khodabakhshi, P., Reddy, J.N.: A unified beam theory with strain gradient effect and the von kármán nonlinearity. ZAMM J. Appl. Math. Mech. 97(1), 70–91 (2017)
23.
go back to reference Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986) Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986)
24.
go back to reference Lakes, R.S.: Experimental micro mechanics methods for conventional and negative poisson’s ration cellular solids as cosserat continua. Trans. ASME J. Eng. Mater. Technol. 113, 148–155 (1991) Lakes, R.S.: Experimental micro mechanics methods for conventional and negative poisson’s ration cellular solids as cosserat continua. Trans. ASME J. Eng. Mater. Technol. 113, 148–155 (1991)
25.
go back to reference Lakes, R.S.: Experimental methods for study of cosserat elastic solids and other generalized continua. In: Mühlhaus, H. (ed.) Continuum Models for Materials with Micro-Structure, pp. 1–22. Wiley, New York (1995)MATH Lakes, R.S.: Experimental methods for study of cosserat elastic solids and other generalized continua. In: Mühlhaus, H. (ed.) Continuum Models for Materials with Micro-Structure, pp. 1–22. Wiley, New York (1995)MATH
26.
go back to reference Liu, F., Wang, L., Liu, X., Lu, P.: Equivalent micropolar beam model for spatial vibration analysis of planar repetitive truss structure with flexible joints. Int. J. Mech. Sci. 165, 105202 (2020) Liu, F., Wang, L., Liu, X., Lu, P.: Equivalent micropolar beam model for spatial vibration analysis of planar repetitive truss structure with flexible joints. Int. J. Mech. Sci. 165, 105202 (2020)
27.
go back to reference Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko bema model based on a modified couple stress theory. J. Mech. Phys. Solids 56(12), 3379–3391 (2008)MathSciNetMATH Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko bema model based on a modified couple stress theory. J. Mech. Phys. Solids 56(12), 3379–3391 (2008)MathSciNetMATH
28.
go back to reference Ma, H.M., Gao, X.L., Reddy, J.N.: A nonclassical Reddy–Levinson beam model based on a modified couple stress theory. Int. J. Multiscale Comput. 8(2), 167–180 (2010) Ma, H.M., Gao, X.L., Reddy, J.N.: A nonclassical Reddy–Levinson beam model based on a modified couple stress theory. Int. J. Multiscale Comput. 8(2), 167–180 (2010)
29.
go back to reference McGregor, M., Wheel, M.A.: On the coupling number and characteristic length of micropolar media of differing topology. Proc. R. Soc. A 470, 20140150 (2014) McGregor, M., Wheel, M.A.: On the coupling number and characteristic length of micropolar media of differing topology. Proc. R. Soc. A 470, 20140150 (2014)
30.
go back to reference Nampally, P., Karttunen, A.T., Reddy, J.N.: Nonlinear finite element analysis of lattice core sandwich beams. Eur. J. Mech A Solid 74, 431–439 (2019)MathSciNetMATH Nampally, P., Karttunen, A.T., Reddy, J.N.: Nonlinear finite element analysis of lattice core sandwich beams. Eur. J. Mech A Solid 74, 431–439 (2019)MathSciNetMATH
31.
go back to reference Noor, A.K., Nemeth, M.P.: Micropolar beam models for lattice grids with rigid joints. Comput. Methods Appl. Mech. Eng. 21(2), 249–263 (1980)MATH Noor, A.K., Nemeth, M.P.: Micropolar beam models for lattice grids with rigid joints. Comput. Methods Appl. Mech. Eng. 21(2), 249–263 (1980)MATH
32.
go back to reference Nowacki, W.: Theory of Micropolar Elasticity. Springer, New York (1970)MATH Nowacki, W.: Theory of Micropolar Elasticity. Springer, New York (1970)MATH
33.
go back to reference Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon Press, Oxford (1986)MATH Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon Press, Oxford (1986)MATH
34.
go back to reference Park, S.K., Gao, X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355–2359 (2006) Park, S.K., Gao, X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355–2359 (2006)
35.
go back to reference Pau, A., Trovalusci, P.: Block masonry as equivalent micropolar continua: the role of relative rotations. Acta. Mech. 223, 1455–1471 (2012)MATH Pau, A., Trovalusci, P.: Block masonry as equivalent micropolar continua: the role of relative rotations. Acta. Mech. 223, 1455–1471 (2012)MATH
36.
go back to reference Payette, G.S., Reddy, J.N.: A nonlinear finite element framework for viscoelastic beams based on the high-order Reddy beam theory. J. Mater. Technol. 135(1), 011005-1–011005-11 (2013) Payette, G.S., Reddy, J.N.: A nonlinear finite element framework for viscoelastic beams based on the high-order Reddy beam theory. J. Mater. Technol. 135(1), 011005-1–011005-11 (2013)
37.
go back to reference Payette, G.S., Reddy, J.N.: A seven-parameter spectral/hp finite element formulation for isotropic, laminated composite and functionally graded shell structures. Comput. Methods Appl. Mech. Eng. 278, 664–704 (2014)MathSciNetMATH Payette, G.S., Reddy, J.N.: A seven-parameter spectral/hp finite element formulation for isotropic, laminated composite and functionally graded shell structures. Comput. Methods Appl. Mech. Eng. 278, 664–704 (2014)MathSciNetMATH
38.
go back to reference Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3–4), 774–787 (2009a)MathSciNetMATH Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3–4), 774–787 (2009a)MathSciNetMATH
39.
go back to reference Pietraszkiewicz, W., Eremeyev, V.A.: On vectorially parameterized natural strain measures of the non-linear cosserat continuum. Int. J. Solids Struct. 46(11–12), 2477–2480 (2009b)MATH Pietraszkiewicz, W., Eremeyev, V.A.: On vectorially parameterized natural strain measures of the non-linear cosserat continuum. Int. J. Solids Struct. 46(11–12), 2477–2480 (2009b)MATH
40.
go back to reference Ramezani, S., Naghdabadi, R., Sohrabpour, S.: Analysis of micropolar elastic beams. Eur. J. Mech. A Solids 28(2), 202–208 (2009)MATH Ramezani, S., Naghdabadi, R., Sohrabpour, S.: Analysis of micropolar elastic beams. Eur. J. Mech. A Solids 28(2), 202–208 (2009)MATH
41.
go back to reference Reddy, J.N.: Nonlocal theries for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2–8), 288–307 (2007)MATH Reddy, J.N.: Nonlocal theries for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2–8), 288–307 (2007)MATH
42.
go back to reference Reddy, J.N.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48(11), 1507–1518 (2010)MathSciNetMATH Reddy, J.N.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48(11), 1507–1518 (2010)MathSciNetMATH
43.
go back to reference Reddy, J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59(11), 2382–2399 (2011)MathSciNetMATH Reddy, J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59(11), 2382–2399 (2011)MathSciNetMATH
44.
go back to reference Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, Oxford (2015) Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, Oxford (2015)
45.
go back to reference Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics, 3rd edn. Wiley, New York (2018) Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics, 3rd edn. Wiley, New York (2018)
46.
go back to reference Reddy, J.N.: An Introduction to the Finite Element Method, 4th edn. McGraw-Hill, New York (2019) Reddy, J.N.: An Introduction to the Finite Element Method, 4th edn. McGraw-Hill, New York (2019)
47.
go back to reference Schmidt, R., Reddy, J.N.: A refined small strain and moderate rotation theory of elastic anisotropic shells. J. Appl. Mech. 55(3), 611–617 (1988)MATH Schmidt, R., Reddy, J.N.: A refined small strain and moderate rotation theory of elastic anisotropic shells. J. Appl. Mech. 55(3), 611–617 (1988)MATH
48.
go back to reference Slaughter, W.S.: The Linearized Theory of Elasticity. Birkhäuser, Boston (2002)MATH Slaughter, W.S.: The Linearized Theory of Elasticity. Birkhäuser, Boston (2002)MATH
49.
go back to reference Thai, H.T.: A nonlocal beam theory for bending, buckling and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)MathSciNetMATH Thai, H.T.: A nonlocal beam theory for bending, buckling and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)MathSciNetMATH
50.
go back to reference Trovalusci, P., De Bellis, M.L., Masiani, R.: A multiscale description of particle composites: from lattice microstructures to micropolar continua. Compos. B Eng. 128, 164–173 (2017) Trovalusci, P., De Bellis, M.L., Masiani, R.: A multiscale description of particle composites: from lattice microstructures to micropolar continua. Compos. B Eng. 128, 164–173 (2017)
51.
go back to reference Trovalusci, P., Ostoja-Starzewski, M., De Bellis, M., Murrali, A.: Scale-dependent homogenization of random composites as micropolar continua. Eur. J. Mech. A Solids 49, 396–407 (2015) Trovalusci, P., Ostoja-Starzewski, M., De Bellis, M., Murrali, A.: Scale-dependent homogenization of random composites as micropolar continua. Eur. J. Mech. A Solids 49, 396–407 (2015)
52.
go back to reference Wang, B., Zhao, J., Zhou, S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A Solids 29(4), 591–599 (2010) Wang, B., Zhao, J., Zhou, S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A Solids 29(4), 591–599 (2010)
53.
go back to reference Wang, C.M., Reddy, J.N., Lee, K.H.: Shear Deformable Beams and Plates. Elsevier, Amsterdam (2000)MATH Wang, C.M., Reddy, J.N., Lee, K.H.: Shear Deformable Beams and Plates. Elsevier, Amsterdam (2000)MATH
54.
go back to reference Yang, J.F.C., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15(2), 91–98 (1982) Yang, J.F.C., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15(2), 91–98 (1982)
Metadata
Title
Geometrically nonlinear Euler–Bernoulli and Timoshenko micropolar beam theories
Authors
Praneeth Nampally
J. N. Reddy
Publication date
23-07-2020
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 10/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02764-x

Other articles of this Issue 10/2020

Acta Mechanica 10/2020 Go to the issue

Premium Partners