Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 10/2022

13-10-2022 | Research Article-Civil Engineering

Geotechnical Properties of Lime-Magnesium Slag Stabilized Clayey Sand: Experimental Study

Authors: Amini Omid, Ghasemi Mojtaba

Published in: Arabian Journal for Science and Engineering | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Over the past decades, quite a few investigations have been carried out to utilize slags as a cementing agent in landfills, road construction, concrete, and mortars. However, a limited number of research studies investigated the use of magnesium slag as a soil stabilizer in geotechnical engineering projects. The manufacturing process of metallic magnesium produces a large volume of magnesium slag which is occasionally dumped in open areas. In this research, the potential use of magnesium slag as an additive agent to improve the properties of lime-stabilized soil was experimentally investigated. For this purpose, a number of different tests such as pH, Standard Proctor Compaction, Unconfined Compressive Strength, Indirect Tensile Strength, Toxicity Characteristic Leaching Procedure, X-ray diffraction, and Scanning Electron Microscopy were performed on the clayey sand containing 0%, 10%, 20%, 30%, 40% and 50% magnesium slag with 4% and 8% lime (by dry weight of the used soil). Samples were cured for 7, 28, and 56 days. The results of the study indicated that the addition of the maximum amount of magnesium slag (50%) at all curing days improved the geotechnical characteristics of soil samples containing 8% Lime. Generally, it was found that magnesium slag can be effectively applied in soil stabilization projects to improve the geotechnical properties and alleviate environmental repercussions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jahandari, S.; Mojtahedi, S.F.; Zivari, F.; Jafari, M.; Mahmoudi, M.R.; Shokrgozar, A.; Kharazmi, S.; Vosough Hosseini, B.; Rezvani, S.; Jalalifar, H.: The impact of long-term curing period on the mechanical features of lime-geogrid treated soils. Geomech. Geoeng. 1–13 (2020) Jahandari, S.; Mojtahedi, S.F.; Zivari, F.; Jafari, M.; Mahmoudi, M.R.; Shokrgozar, A.; Kharazmi, S.; Vosough Hosseini, B.; Rezvani, S.; Jalalifar, H.: The impact of long-term curing period on the mechanical features of lime-geogrid treated soils. Geomech. Geoeng. 1–13 (2020)
2.
go back to reference Sadeghian, F.; Haddad, A.; Jahandari, S.; Rasekh, H.; Ozbakkaloglu, T.: Effects of electrokinetic phenomena on the load-bearing capacity of different steel and concrete piles: a small-scale experimental study. Can. Geotech. J. 1–16 Sadeghian, F.; Haddad, A.; Jahandari, S.; Rasekh, H.; Ozbakkaloglu, T.: Effects of electrokinetic phenomena on the load-bearing capacity of different steel and concrete piles: a small-scale experimental study. Can. Geotech. J. 1–16
3.
go back to reference Jahandari, S.; Saberian, M.; Tao, Z.; Faridfazel Mojtahedi, S.; Li, J.; Ghasemi, M.; Rezvani, S.S.; Li, W.: Effects of saturation degrees, freezing thawing, and curing on geotechnical properties of lime and lime-cement concretes. Cold Reg. Sci. Technol. 160, 242–251 (2019)CrossRef Jahandari, S.; Saberian, M.; Tao, Z.; Faridfazel Mojtahedi, S.; Li, J.; Ghasemi, M.; Rezvani, S.S.; Li, W.: Effects of saturation degrees, freezing thawing, and curing on geotechnical properties of lime and lime-cement concretes. Cold Reg. Sci. Technol. 160, 242–251 (2019)CrossRef
4.
go back to reference Saberian, M.; Jahandari, S.; Li, J.; Zivari, F.: Effect of curing, capillary action, and groundwater level increment on geotechnical properties of lime concrete: experimental and prediction studies. J. Rock Mech. Geotech. Eng. 9(4), 638–647 (2017)CrossRef Saberian, M.; Jahandari, S.; Li, J.; Zivari, F.: Effect of curing, capillary action, and groundwater level increment on geotechnical properties of lime concrete: experimental and prediction studies. J. Rock Mech. Geotech. Eng. 9(4), 638–647 (2017)CrossRef
5.
go back to reference Jahandari, S.; Toufigh, M.M.; Li, J.; Saberian, M.: Laboratory study of the effect of degrees of saturation on lime concrete resistance due to the groundwater level increment. Geotech. Geol. Eng. 36(1), 413–424 (2017)CrossRef Jahandari, S.; Toufigh, M.M.; Li, J.; Saberian, M.: Laboratory study of the effect of degrees of saturation on lime concrete resistance due to the groundwater level increment. Geotech. Geol. Eng. 36(1), 413–424 (2017)CrossRef
6.
go back to reference Jahandari, S.; Li, J.; Saberian, M.; Shahsavarigoughari, M.: Experimental study of the effects of geogrids on elasticity modulus, brittleness, strength, and stress-strain behavior of lime stabilized kaolinitic clay. GeoResJ. 13, 49–58 (2017)CrossRef Jahandari, S.; Li, J.; Saberian, M.; Shahsavarigoughari, M.: Experimental study of the effects of geogrids on elasticity modulus, brittleness, strength, and stress-strain behavior of lime stabilized kaolinitic clay. GeoResJ. 13, 49–58 (2017)CrossRef
7.
go back to reference Toghroli, A.; Mehrabi, P.; Shariati, M.; Trung, N.T.; Jahandari, S.; Rasekh, H.: Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers. Constr. Build. Mater. 252 (2020) Toghroli, A.; Mehrabi, P.; Shariati, M.; Trung, N.T.; Jahandari, S.; Rasekh, H.: Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers. Constr. Build. Mater. 252 (2020)
8.
go back to reference Al-Swaidani, A.; Hammoud, L.; Meziab, A.: Effect of adding natural pozzolana on geotechnical properties of lime stabilized clayey soil. J. Rock Mech. Geotech. Eng. 8(5), 714–725 (2016)CrossRef Al-Swaidani, A.; Hammoud, L.; Meziab, A.: Effect of adding natural pozzolana on geotechnical properties of lime stabilized clayey soil. J. Rock Mech. Geotech. Eng. 8(5), 714–725 (2016)CrossRef
9.
go back to reference Mallela, J.; Harold Von Quintus, P.; Smith, K.L.: Consideration of Lime-Stabilized Layers in Mechanistic-Empirical Pavement Design. The National Lime Association, Arlington (2004) Mallela, J.; Harold Von Quintus, P.; Smith, K.L.: Consideration of Lime-Stabilized Layers in Mechanistic-Empirical Pavement Design. The National Lime Association, Arlington (2004)
10.
go back to reference Sakr, M.A.; Shahin, M.A.; Metwally, Y.M.: Utilization of lime for stabilization soft clay soil of high organic content. Geotech. Geol. Eng 27, 105e13 (2009)CrossRef Sakr, M.A.; Shahin, M.A.; Metwally, Y.M.: Utilization of lime for stabilization soft clay soil of high organic content. Geotech. Geol. Eng 27, 105e13 (2009)CrossRef
11.
go back to reference Rogers, C.; Glendinning, S.: Modification of Clay Soils Using Lime. Ground Engineering, p. 99e114. Thomas Telford Limited, London (1996) Rogers, C.; Glendinning, S.: Modification of Clay Soils Using Lime. Ground Engineering, p. 99e114. Thomas Telford Limited, London (1996)
12.
go back to reference Bell, F.G.: Lime stabilization of clay minerals and soils. Eng. Geol. 42(4), 223e37 (1996)CrossRef Bell, F.G.: Lime stabilization of clay minerals and soils. Eng. Geol. 42(4), 223e37 (1996)CrossRef
13.
go back to reference Ghobadi, M.H.; Abdilor, Y.; Babazadeh, R.: Stabilization of clay soils using lime and effect of pH variations on shear strength parameters. Bull. Eng. Geol. Environ. 73(2), 611e9 (2014)CrossRef Ghobadi, M.H.; Abdilor, Y.; Babazadeh, R.: Stabilization of clay soils using lime and effect of pH variations on shear strength parameters. Bull. Eng. Geol. Environ. 73(2), 611e9 (2014)CrossRef
14.
go back to reference Kassim, K.A.; Chern, K.K.: Lime stabilized Malaysian cohesive soils. Jurnal Kejuruteraan Awan 16(1), 13e23 (2004) Kassim, K.A.; Chern, K.K.: Lime stabilized Malaysian cohesive soils. Jurnal Kejuruteraan Awan 16(1), 13e23 (2004)
15.
go back to reference Rao, S.M.; Shivananda, P.: Compressibility behavior of lime-stabilized clay. Geotech. Geol. Eng. 23, 309e19 (2005)CrossRef Rao, S.M.; Shivananda, P.: Compressibility behavior of lime-stabilized clay. Geotech. Geol. Eng. 23, 309e19 (2005)CrossRef
16.
go back to reference Kinuthia, J.M.; Wild, S.; Jones, G.I.: Effects of monovalent and divalent metal sulphates on consistency and compaction of lime-stabilised kaolinite. Appl. Clay Sci. 14, 27–45 (1999)CrossRef Kinuthia, J.M.; Wild, S.; Jones, G.I.: Effects of monovalent and divalent metal sulphates on consistency and compaction of lime-stabilised kaolinite. Appl. Clay Sci. 14, 27–45 (1999)CrossRef
17.
go back to reference Lin, D.F.; Lin, K.L.; Hung, M.J.; Luo, H.L.: Sludge ash/hydrated lime on the geotechnical properties of soft soil. J. Hazard. Mater. 145, 58–64 (2007)CrossRef Lin, D.F.; Lin, K.L.; Hung, M.J.; Luo, H.L.: Sludge ash/hydrated lime on the geotechnical properties of soft soil. J. Hazard. Mater. 145, 58–64 (2007)CrossRef
18.
go back to reference Sol-Sáncheza, M.; Castrob, J.; Ureña, C.G.; Azañón, J.M.: Stabilisation of clayey and marly soils using industrial wastes: pH and laser granulometry Indicators. Eng. Geol. 200, 10–17 (2016)CrossRef Sol-Sáncheza, M.; Castrob, J.; Ureña, C.G.; Azañón, J.M.: Stabilisation of clayey and marly soils using industrial wastes: pH and laser granulometry Indicators. Eng. Geol. 200, 10–17 (2016)CrossRef
19.
go back to reference Sargent, P.: Handbook of Alkali-Activated Cements, Mortars and Concretes (2015) Sargent, P.: Handbook of Alkali-Activated Cements, Mortars and Concretes (2015)
20.
go back to reference Fauzi, A.; Nazmi, W.M.; Abdul-Rahman, W.; Jauhari, Z.: Utilization waste material as stabilizer on Kuantan clayey soil stabilization. Procedia Eng 53, 42–47 (2013)CrossRef Fauzi, A.; Nazmi, W.M.; Abdul-Rahman, W.; Jauhari, Z.: Utilization waste material as stabilizer on Kuantan clayey soil stabilization. Procedia Eng 53, 42–47 (2013)CrossRef
21.
go back to reference Jafari, M.; Esna-ashari, M.: Effect of waste tire cord reinforcement on unconfined compressive strength of lime stabilized clayey soil under freeze–thaw condition. Cold Reg. Sci. Technol. 82, 21–29 (2012)CrossRef Jafari, M.; Esna-ashari, M.: Effect of waste tire cord reinforcement on unconfined compressive strength of lime stabilized clayey soil under freeze–thaw condition. Cold Reg. Sci. Technol. 82, 21–29 (2012)CrossRef
22.
go back to reference Lee, S.H.; Kim, E.Y.; Park, H.; Yun, J.; Kim, J.G.: In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma 161(1–2), 1–7 (2011)CrossRef Lee, S.H.; Kim, E.Y.; Park, H.; Yun, J.; Kim, J.G.: In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma 161(1–2), 1–7 (2011)CrossRef
23.
go back to reference Ansari Mahabadi, A.; Hajabbasi, M.A.; Khademi, H.; Kazemian, H.: Soil cadmium stabilization using an Iranian natural zeolite. Geoderma 137(3–4), 388–393 (2007)CrossRef Ansari Mahabadi, A.; Hajabbasi, M.A.; Khademi, H.; Kazemian, H.: Soil cadmium stabilization using an Iranian natural zeolite. Geoderma 137(3–4), 388–393 (2007)CrossRef
24.
go back to reference Yang, K.-H.; Jung, Y.-B.; Cho, M.-S.; Tae, S.-H.: Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. J. Clean. Prod. 103, 774–783 (2015)CrossRef Yang, K.-H.; Jung, Y.-B.; Cho, M.-S.; Tae, S.-H.: Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. J. Clean. Prod. 103, 774–783 (2015)CrossRef
25.
go back to reference Liu, D.B.; Sun, Q.: China Metal Bulletin, vol. 7, pp. 32–33 (2011) Liu, D.B.; Sun, Q.: China Metal Bulletin, vol. 7, pp. 32–33 (2011)
26.
go back to reference Xu, R.Y.; Liu, H.Z.: World Nonferrous Metals, vol. 1, pp. 16–19 (2006) Xu, R.Y.; Liu, H.Z.: World Nonferrous Metals, vol. 1, pp. 16–19 (2006)
27.
go back to reference Deng, J.; Wang, X.; Guo, Y.: Research on the hydration mechanism of portland cement with magnesium slag. Appl. Mech. Mater. 576, 57–62 (2014)CrossRef Deng, J.; Wang, X.; Guo, Y.: Research on the hydration mechanism of portland cement with magnesium slag. Appl. Mech. Mater. 576, 57–62 (2014)CrossRef
28.
go back to reference Ilić, M.; Miletić, S.; Munitlak, R.: Enviromental protection by utilization of the slag from magnesium production in building materials. Toxicol. Environ. Chem. 69, 217–224 (1999)CrossRef Ilić, M.; Miletić, S.; Munitlak, R.: Enviromental protection by utilization of the slag from magnesium production in building materials. Toxicol. Environ. Chem. 69, 217–224 (1999)CrossRef
29.
go back to reference Oliveira, C.; Gumieri, G.; Gomes, M.; Vasconcelos, L.: Characterization of magnesium slag aiming the utilization as a mineral admixture in mortar (1997) Oliveira, C.; Gumieri, G.; Gomes, M.; Vasconcelos, L.: Characterization of magnesium slag aiming the utilization as a mineral admixture in mortar (1997)
30.
go back to reference Cai J, Gao G, Bai R, Lu F and Li L. Research on Slaked Magnesium Slag as a Raw Material and Blend for Portland Cement. 2011; Trans Tech Publications, Switzerland. Cai J, Gao G, Bai R, Lu F and Li L. Research on Slaked Magnesium Slag as a Raw Material and Blend for Portland Cement. 2011; Trans Tech Publications, Switzerland.
31.
go back to reference Xiao, L.; Luo, F.; Li, R.; Liu, C.: The Study of Alkaline-activated Magnesium Slag Cementitious Material. Trans Tech Publications, Switzerland (2012)CrossRef Xiao, L.; Luo, F.; Li, R.; Liu, C.: The Study of Alkaline-activated Magnesium Slag Cementitious Material. Trans Tech Publications, Switzerland (2012)CrossRef
32.
go back to reference Lu, F.; Bai, F.; Cai, J.: Study on Clinker Production using Magnesium Slag on a 4500tpd Line. Trans Tech Publications, Switzerland (2013)CrossRef Lu, F.; Bai, F.; Cai, J.: Study on Clinker Production using Magnesium Slag on a 4500tpd Line. Trans Tech Publications, Switzerland (2013)CrossRef
33.
go back to reference Amini, O.; Ghasemi, M.: Laboratory study of the effects of using magnesium slag on the geotechnical properties of cement stabilized soil. Constr. Build. Mater. 223, 409–420 (2019)CrossRef Amini, O.; Ghasemi, M.: Laboratory study of the effects of using magnesium slag on the geotechnical properties of cement stabilized soil. Constr. Build. Mater. 223, 409–420 (2019)CrossRef
34.
go back to reference USEPA 1311: Toxicity Characteristics Leaching Procedure. United States Environment Protection Agency, USA (1992) USEPA 1311: Toxicity Characteristics Leaching Procedure. United States Environment Protection Agency, USA (1992)
35.
go back to reference ASTM D2487-11: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken (2011) ASTM D2487-11: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken (2011)
36.
go back to reference ASTM D4972-13 Standard Test Method for pH of Soils, Annual Book of ASTM Standards (2007) ASTM D4972-13 Standard Test Method for pH of Soils, Annual Book of ASTM Standards (2007)
37.
go back to reference ASTM D698: Standard test method for Laboratory Compaction Characteristics of Soil Using Standard Effort. Annual Book of ASTM Standards, West Conshohocken (2012) ASTM D698: Standard test method for Laboratory Compaction Characteristics of Soil Using Standard Effort. Annual Book of ASTM Standards, West Conshohocken (2012)
38.
go back to reference ASTM D854-92: Standard Test Method for Specific Gravity of Soils. ASTM International, West Conshohocken (1994) ASTM D854-92: Standard Test Method for Specific Gravity of Soils. ASTM International, West Conshohocken (1994)
39.
go back to reference ASTM D4318: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, West Conshohocken (2010) ASTM D4318: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, West Conshohocken (2010)
40.
go back to reference ASTM E1621-13: Standard Guide for Elemental Analysis by Wavelength Dispersive X-Ray Fluorescence Spectrometry. Annual Book of ASTM Standards, USA (2010) ASTM E1621-13: Standard Guide for Elemental Analysis by Wavelength Dispersive X-Ray Fluorescence Spectrometry. Annual Book of ASTM Standards, USA (2010)
41.
go back to reference Afshar, A.; Jahandari, S.; Rasekh, H.; Shariati, M.; Afshar, A.; Shokrgozar, A.: Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives. Constr. Build. Mater. 262 (2020) Afshar, A.; Jahandari, S.; Rasekh, H.; Shariati, M.; Afshar, A.; Shokrgozar, A.: Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives. Constr. Build. Mater. 262 (2020)
42.
go back to reference Kazemi, M.; Li, J.; Harehdasht, S.L.; Yousefieh, N.; Jahandari, S.; Saberian, M.: Non-linear behavior of concrete beams reinforced with GFRP and CFRP bars grouted in sleeves. Structures 23, 87–102 (2020)CrossRef Kazemi, M.; Li, J.; Harehdasht, S.L.; Yousefieh, N.; Jahandari, S.; Saberian, M.: Non-linear behavior of concrete beams reinforced with GFRP and CFRP bars grouted in sleeves. Structures 23, 87–102 (2020)CrossRef
43.
go back to reference Kazemi, M.; Hajforoush, M.; Khakpour Talebi, P.; Daneshfar, M.; Shokrgozar, A.; Jahandari, S.; Saberian, M.; Li, J.: In-situ strength estimation of polypropylene fibre reinforced recycled aggregate concrete using Schmidt rebound hammer and point load test. J. Sustain. Cement Based Mater. 1–18 (2020) Kazemi, M.; Hajforoush, M.; Khakpour Talebi, P.; Daneshfar, M.; Shokrgozar, A.; Jahandari, S.; Saberian, M.; Li, J.: In-situ strength estimation of polypropylene fibre reinforced recycled aggregate concrete using Schmidt rebound hammer and point load test. J. Sustain. Cement Based Mater. 1–18 (2020)
44.
go back to reference Jahandari, S.; Saberian, M.; Zivari, F.; Li, J.; Ghasemi, M.; Vali, R.: Experimental study of the effects of curing time on geotechnical properties of stabilized clay with lime and geogrid. Int. J. Geotech. Eng. 13(2), 1–12 (2017) Jahandari, S.; Saberian, M.; Zivari, F.; Li, J.; Ghasemi, M.; Vali, R.: Experimental study of the effects of curing time on geotechnical properties of stabilized clay with lime and geogrid. Int. J. Geotech. Eng. 13(2), 1–12 (2017)
45.
go back to reference Rasekh, H.; Joshaghani, A.; Jahandari, S.; Aslani F.; Ghodrat, M.: Rheology and workability of SCC. In: Woodhead Publishing Series in Civil and Structural Engineering, pp. 31–63 (2020) Rasekh, H.; Joshaghani, A.; Jahandari, S.; Aslani F.; Ghodrat, M.: Rheology and workability of SCC. In: Woodhead Publishing Series in Civil and Structural Engineering, pp. 31–63 (2020)
46.
go back to reference Darvishi, A.; Vosoughifar, H.; Saeidijam, S.; Torabi, M.; Rahmani, A.: An experimental and prediction study on the compaction and swell–expansion behavior of bentonite clay containing various percentages of two different synthetic fibers. Innov. Infrastruct. Solut. 5(1), 1–5 (2020)CrossRef Darvishi, A.; Vosoughifar, H.; Saeidijam, S.; Torabi, M.; Rahmani, A.: An experimental and prediction study on the compaction and swell–expansion behavior of bentonite clay containing various percentages of two different synthetic fibers. Innov. Infrastruct. Solut. 5(1), 1–5 (2020)CrossRef
47.
go back to reference Rezania, M.; Moradnezhad, H.; Panahandeh, M.; Kami, M.J.; Rahmani, A.; Hosseini, B.V.: Effects of diethanolamine (DEA) and glass fibre reinforced polymer (GFRP) on setting time and mechanical properties of shotcrete. J. Build. Eng. 1(31), 101343 (2020)CrossRef Rezania, M.; Moradnezhad, H.; Panahandeh, M.; Kami, M.J.; Rahmani, A.; Hosseini, B.V.: Effects of diethanolamine (DEA) and glass fibre reinforced polymer (GFRP) on setting time and mechanical properties of shotcrete. J. Build. Eng. 1(31), 101343 (2020)CrossRef
48.
go back to reference Hanaei, F.; Sarmadi, M.S.; Rezaee, M.; Rahmani, A.: Experimental investigation of the effects of gas oil and benzene on the geotechnical properties of sandy soils. Innov. Infrastruct. Solut. (2021) Hanaei, F.; Sarmadi, M.S.; Rezaee, M.; Rahmani, A.: Experimental investigation of the effects of gas oil and benzene on the geotechnical properties of sandy soils. Innov. Infrastruct. Solut. (2021)
49.
go back to reference ASTM D2166: Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. West Conshohocken, Pennsylvania (1982) ASTM D2166: Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. West Conshohocken, Pennsylvania (1982)
50.
go back to reference ASTM: Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens. ASTM D3967 (2008) ASTM: Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens. ASTM D3967 (2008)
51.
go back to reference Elert, K.; Nieto, F.; Azañón, J.M.: Effects of lime treatments on marls. Appl. Clay Sci. 135, 611–619 (2016)CrossRef Elert, K.; Nieto, F.; Azañón, J.M.: Effects of lime treatments on marls. Appl. Clay Sci. 135, 611–619 (2016)CrossRef
52.
go back to reference Phair, J.W.; Van Deventer, J.S.J.: Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int. J. Miner. Process. 66(1), 121–143 (2002)CrossRef Phair, J.W.; Van Deventer, J.S.J.: Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int. J. Miner. Process. 66(1), 121–143 (2002)CrossRef
53.
go back to reference Khale, D.; Chaudhary, R.: Mechanism of geopolymerization and factors influencing its development: a review. J. Mater. Sci. 42(3), 729–746 (2007)CrossRef Khale, D.; Chaudhary, R.: Mechanism of geopolymerization and factors influencing its development: a review. J. Mater. Sci. 42(3), 729–746 (2007)CrossRef
54.
go back to reference Ghadir, P.; Ranjbar, N.: Clayey soil stabilization using geopolymer and Portland cement. Constr. Build. Mater. 188, 361–371 (2018)CrossRef Ghadir, P.; Ranjbar, N.: Clayey soil stabilization using geopolymer and Portland cement. Constr. Build. Mater. 188, 361–371 (2018)CrossRef
55.
go back to reference Gaucher, E.C.; Blanc, P.: Cement/clay interactions—a review: experiments, natural analogues, and modeling. Waste Manag. 26, 776–788 (2006)CrossRef Gaucher, E.C.; Blanc, P.: Cement/clay interactions—a review: experiments, natural analogues, and modeling. Waste Manag. 26, 776–788 (2006)CrossRef
56.
go back to reference Cardoso, R.; Maranha das Neves E: Hydro-mechanical characterization of lime treated and untreated marls used in a motorway embankment. Eng. Geol. 133–134, 76–84 (2012)CrossRef Cardoso, R.; Maranha das Neves E: Hydro-mechanical characterization of lime treated and untreated marls used in a motorway embankment. Eng. Geol. 133–134, 76–84 (2012)CrossRef
57.
go back to reference Al-Amoudi, O.; Khan, K.; Al-Kahtani, N.S.: Stabilisation of a Saudi calcareous marl soil. Constr. Build. Mater. 24, 1848–1854 (2010)CrossRef Al-Amoudi, O.; Khan, K.; Al-Kahtani, N.S.: Stabilisation of a Saudi calcareous marl soil. Constr. Build. Mater. 24, 1848–1854 (2010)CrossRef
58.
go back to reference Degirmenci, N.; Okucu, A.; Turabi, A.: Application of phosphogypsum in soil stabilization. Build. Environ. 42(9), 3393–3398 (2007)CrossRef Degirmenci, N.; Okucu, A.; Turabi, A.: Application of phosphogypsum in soil stabilization. Build. Environ. 42(9), 3393–3398 (2007)CrossRef
59.
go back to reference Nalbantoğlu, Z.: Effectiveness of class C fly ash as an expansive soil stabilizer. Constr. Build. Mater. 18(6), 377–381 (2014)CrossRef Nalbantoğlu, Z.: Effectiveness of class C fly ash as an expansive soil stabilizer. Constr. Build. Mater. 18(6), 377–381 (2014)CrossRef
60.
go back to reference Harichane, K.; Ghrici, M.; Kenai, S.: Effect of the combination of lime and natural pozzolana on the compaction and strength of soft clayey soils: a preliminary study. Environ. Earth Sci. 66(8), 2197–2205 (2012)CrossRef Harichane, K.; Ghrici, M.; Kenai, S.: Effect of the combination of lime and natural pozzolana on the compaction and strength of soft clayey soils: a preliminary study. Environ. Earth Sci. 66(8), 2197–2205 (2012)CrossRef
61.
go back to reference Basha, E.; Hashim, R.; Mahmud, H.; Muntohar, A.: Stabilization of residual soil with rice husk ash and cement. Constr. Build. Mater. 19(6), 448–453 (2005)CrossRef Basha, E.; Hashim, R.; Mahmud, H.; Muntohar, A.: Stabilization of residual soil with rice husk ash and cement. Constr. Build. Mater. 19(6), 448–453 (2005)CrossRef
62.
go back to reference Yi, Y.; Gu, L.; Liu, S.: Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blastfurnace slag. Appl. Clay Sci. 103(1), 71–76 (2015)CrossRef Yi, Y.; Gu, L.; Liu, S.: Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blastfurnace slag. Appl. Clay Sci. 103(1), 71–76 (2015)CrossRef
63.
go back to reference Barišic, I.; Dimter, S.; Rukavina, T.: Strength properties of steel slag stabilized mixes. Compos. Part B Eng. 58, 386–391 (2014)CrossRef Barišic, I.; Dimter, S.; Rukavina, T.: Strength properties of steel slag stabilized mixes. Compos. Part B Eng. 58, 386–391 (2014)CrossRef
64.
go back to reference Jha, A.K.; Sivapullaiah, P.V.: Potential of fly ash to suppress the susceptible behavior of lime-treated gypseous soil. Soils Found. 58(3), 654–665 (2018)CrossRef Jha, A.K.; Sivapullaiah, P.V.: Potential of fly ash to suppress the susceptible behavior of lime-treated gypseous soil. Soils Found. 58(3), 654–665 (2018)CrossRef
65.
go back to reference Evans, P.: Update on lime stabilization. In: QMR Technology Transfer Seminar, pp. 1–18 (1997) Evans, P.: Update on lime stabilization. In: QMR Technology Transfer Seminar, pp. 1–18 (1997)
67.
go back to reference Thorneloe, S.A.; Kosson, D.S.; Sanchez, F.; Helms, G.; Garrabrants, A.C.: Improved leaching test methods for environmental assessment of coal ash and recycled materials used in construction. In: Proceedings of the International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy (2009) Thorneloe, S.A.; Kosson, D.S.; Sanchez, F.; Helms, G.; Garrabrants, A.C.: Improved leaching test methods for environmental assessment of coal ash and recycled materials used in construction. In: Proceedings of the International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy (2009)
Metadata
Title
Geotechnical Properties of Lime-Magnesium Slag Stabilized Clayey Sand: Experimental Study
Authors
Amini Omid
Ghasemi Mojtaba
Publication date
13-10-2022
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 10/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-022-07288-1

Other articles of this Issue 10/2022

Arabian Journal for Science and Engineering 10/2022 Go to the issue

Premium Partners