Skip to main content
Top
Published in: Neural Computing and Applications 10/2019

05-03-2018 | Original Article

GEP and MLR approaches for the prediction of reference evapotranspiration

Authors: Mohamed A. Mattar, A. A. Alazba

Published in: Neural Computing and Applications | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, reference evapotranspiration (ETo) is modeled as one of the major items of hydrological applications from different combinations of climatic variables using two different techniques: gene expression programming (GEP) and multiple linear regression (MLR). The data used in modeling were collected from weather stations in Egypt through the CLIMWAT database. The Penman–Monteith FAO-56 equation was considered as a reference target for ETo values depending on the entire climatic variables. The developed ETo models’ performances were compared and evaluated with regard to their predictive abilities using statistical criteria to identify the superiority of one modeling approach over the others and determine climatic variables which have a significant effect on ETo. The results indicated that GEP and MLR models’ contribution toward mean relative humidity and wind speed at 2 m height is greater compared to that of other variables. Meanwhile, when adding temperature data to models, solar radiation has a slight effect on increasing the accuracy of ETo estimate. Moreover, the lower statistical error criteria values of GEP models confirmed their better performance than MLR models and other empirical equations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alazba AA, Mattar MA, ElNesr MN, Amin MT (2012) Field assessment of friction head loss and friction correction factor equations. J Irrig Drain Eng 138(2):166–176CrossRef Alazba AA, Mattar MA, ElNesr MN, Amin MT (2012) Field assessment of friction head loss and friction correction factor equations. J Irrig Drain Eng 138(2):166–176CrossRef
2.
go back to reference Alazba AA, Yassin MA, Mattar MA (2016) Modeling daily evapotranspiration in hyper-arid environment using gene expression programming. Arab J Geosci 9(3):202CrossRef Alazba AA, Yassin MA, Mattar MA (2016) Modeling daily evapotranspiration in hyper-arid environment using gene expression programming. Arab J Geosci 9(3):202CrossRef
3.
go back to reference Allen RG (1993) Evaluation of a temperature difference method for computing grass reference evapotranspiration. Report submitted to FAO, Rome Allen RG (1993) Evaluation of a temperature difference method for computing grass reference evapotranspiration. Report submitted to FAO, Rome
4.
go back to reference Allen RG (1996) Assessing integrity of weather data for reference evapotranspiration estimation. J Irrig Drain Eng 122(2):97–106CrossRef Allen RG (1996) Assessing integrity of weather data for reference evapotranspiration estimation. J Irrig Drain Eng 122(2):97–106CrossRef
5.
go back to reference Allen RG (1997) Self-calibrating method for estimating solar radiation from air temperature. J Hydrol Eng 2(2):56–67CrossRef Allen RG (1997) Self-calibrating method for estimating solar radiation from air temperature. J Hydrol Eng 2(2):56–67CrossRef
6.
go back to reference Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, FAO, Rome Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, FAO, Rome
7.
go back to reference Allen RG, Walter IA, Elliott RL, Howell TA, Itenfisu D, Jensen ME, Snyder RL (2005) The ASCE standardized reference evapotranspiration equation. In: Task Committee on Standardization of Reference Evapotranspiration of the EWRI of the ASCE, USA Allen RG, Walter IA, Elliott RL, Howell TA, Itenfisu D, Jensen ME, Snyder RL (2005) The ASCE standardized reference evapotranspiration equation. In: Task Committee on Standardization of Reference Evapotranspiration of the EWRI of the ASCE, USA
8.
go back to reference Amatya DM, Skaggs RW, Gregory JD (1995) Comparison of methods for estimating REF-ET. J Irrig Drain Eng 121(6):427–435CrossRef Amatya DM, Skaggs RW, Gregory JD (1995) Comparison of methods for estimating REF-ET. J Irrig Drain Eng 121(6):427–435CrossRef
9.
go back to reference Chattopadhyay S, Jain R, Chattopadhyay G (2009) Estimating potential evapotranspiration from limited weather data over Gangetic West Bengal, India: a neurocomputing approach. Meteorol Appl 16:403–411CrossRef Chattopadhyay S, Jain R, Chattopadhyay G (2009) Estimating potential evapotranspiration from limited weather data over Gangetic West Bengal, India: a neurocomputing approach. Meteorol Appl 16:403–411CrossRef
10.
go back to reference Droogers P, Allen RG (2002) Estimating reference evapotranspiration under inaccurate data conditions. Irrig Drain Syst 16(1):33–45CrossRef Droogers P, Allen RG (2002) Estimating reference evapotranspiration under inaccurate data conditions. Irrig Drain Syst 16(1):33–45CrossRef
11.
go back to reference Fangmeier DD, Elliot WJ, Workman SR, Huffman RL, Schwab GO (2006) Soil and water conservation engineering, 5th edn. Thomson, Stamford Fangmeier DD, Elliot WJ, Workman SR, Huffman RL, Schwab GO (2006) Soil and water conservation engineering, 5th edn. Thomson, Stamford
12.
go back to reference Ferreira C (2001) Gene expression programming in problem solving. In: 6th Online world conference on soft computing in industrial applications (invited tutorial) Ferreira C (2001) Gene expression programming in problem solving. In: 6th Online world conference on soft computing in industrial applications (invited tutorial)
13.
go back to reference Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13(2):87–129MathSciNetMATH Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13(2):87–129MathSciNetMATH
14.
go back to reference Ferreira C (2006) Gene expression programming: mathematical modeling by an artificial intelligence. Springer, Berlin, p 478MATH Ferreira C (2006) Gene expression programming: mathematical modeling by an artificial intelligence. Springer, Berlin, p 478MATH
15.
go back to reference Fisher JB, Terry A, DeBiase A, Qi Y, Xu M, Allen H (2005) Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environ Model Softw 20:783–796CrossRef Fisher JB, Terry A, DeBiase A, Qi Y, Xu M, Allen H (2005) Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environ Model Softw 20:783–796CrossRef
16.
go back to reference Fontenot RL (2004) An evaluation of reference evapotranspiration models in Louisiana. M.Sc. Thesis, B.S., Louisiana State University and A&M College Fontenot RL (2004) An evaluation of reference evapotranspiration models in Louisiana. M.Sc. Thesis, B.S., Louisiana State University and A&M College
17.
go back to reference Fooladmand HR, Zandilak H, Ravanan MH (2008) Comparison of different types of Hargreaves equation for estimating monthly evapotranspiration in the south of Iran. Arch Agron Soil Sci 54:321–330CrossRef Fooladmand HR, Zandilak H, Ravanan MH (2008) Comparison of different types of Hargreaves equation for estimating monthly evapotranspiration in the south of Iran. Arch Agron Soil Sci 54:321–330CrossRef
18.
go back to reference Garcia M, Raes D, Allen R, Herbas C (2004) Dynamics of reference evapotranspiration in the Bolivian highlands (Altiplano). Agric For Meteorol 125(1–2):67–82CrossRef Garcia M, Raes D, Allen R, Herbas C (2004) Dynamics of reference evapotranspiration in the Bolivian highlands (Altiplano). Agric For Meteorol 125(1–2):67–82CrossRef
19.
go back to reference Gavilan P, Berengena J, Allen RG (2007) Measuring versus estimating net radiation and soil heat flux: impact on Penman–Monteith reference ET estimates in semiarid regions. Agric Water Manag 89:275–286CrossRef Gavilan P, Berengena J, Allen RG (2007) Measuring versus estimating net radiation and soil heat flux: impact on Penman–Monteith reference ET estimates in semiarid regions. Agric Water Manag 89:275–286CrossRef
20.
go back to reference George BA, Reddy BRS, Raghuwanshi NS, Wallender WW (2002) Decision support system for estimating reference evapotranspiration. J Irrig Drain Eng 128(1):1–10CrossRef George BA, Reddy BRS, Raghuwanshi NS, Wallender WW (2002) Decision support system for estimating reference evapotranspiration. J Irrig Drain Eng 128(1):1–10CrossRef
21.
22.
go back to reference Gocic M, Trajkovic S (2010) Software for estimating reference evapotranspiration using limited weather data. Comput Electron Agric 71:158–162CrossRef Gocic M, Trajkovic S (2010) Software for estimating reference evapotranspiration using limited weather data. Comput Electron Agric 71:158–162CrossRef
23.
go back to reference Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, ReadingMATH Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, ReadingMATH
24.
go back to reference Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99CrossRef Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99CrossRef
25.
go back to reference Huo Z, Feng S, Kang S, Dai X (2012) Artificial neural network models for reference evapotranspiration in an arid area of northwest China. J Arid Environ 82:81–90CrossRef Huo Z, Feng S, Kang S, Dai X (2012) Artificial neural network models for reference evapotranspiration in an arid area of northwest China. J Arid Environ 82:81–90CrossRef
26.
go back to reference Irmak S, Irmak A, Allen RG, Jones JW (2003) Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. J Irrig Drain Eng 129(5):336–347CrossRef Irmak S, Irmak A, Allen RG, Jones JW (2003) Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. J Irrig Drain Eng 129(5):336–347CrossRef
27.
go back to reference Kiafar H, Babazadeh H, Marti P, Kişi O, Landeras G, Karimi S, Shiri J (2017) Evaluating the generalizability of GEP models for estimating reference evapotranspiration in distant humid and arid locations. Theor Appl Climatol 130(1–2):377–389CrossRef Kiafar H, Babazadeh H, Marti P, Kişi O, Landeras G, Karimi S, Shiri J (2017) Evaluating the generalizability of GEP models for estimating reference evapotranspiration in distant humid and arid locations. Theor Appl Climatol 130(1–2):377–389CrossRef
28.
go back to reference Kişi O, Ozturk O (2007) Adaptive neuro-fuzzy computing technique for evapotranspiration estimation. J Irrig Drain Eng 133(4):368–379CrossRef Kişi O, Ozturk O (2007) Adaptive neuro-fuzzy computing technique for evapotranspiration estimation. J Irrig Drain Eng 133(4):368–379CrossRef
29.
go back to reference Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. The MIT Press, CambridgeMATH Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. The MIT Press, CambridgeMATH
30.
go back to reference Kumar M, Raghuwanshi NS, Singh R (2011) Artificial neural networks approach in evapotranspiration modeling: a review. Irrig Sci 29:11–25CrossRef Kumar M, Raghuwanshi NS, Singh R (2011) Artificial neural networks approach in evapotranspiration modeling: a review. Irrig Sci 29:11–25CrossRef
31.
go back to reference Landeras G, Barredo AO, Lopez JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric Water Manag 95:553–565CrossRef Landeras G, Barredo AO, Lopez JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric Water Manag 95:553–565CrossRef
32.
go back to reference Legates DR, McCabe GJ Jr (1999) Evaluating the use of ‘‘goodness-of fit’’ measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241CrossRef Legates DR, McCabe GJ Jr (1999) Evaluating the use of ‘‘goodness-of fit’’ measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241CrossRef
33.
go back to reference Licciardello F, Zema DA, Zimbone SM, Bingner RL (2007) Runoff and soil erosion evaluation by the AnnAGNPS model in a small Mediterranean watershed. Trans ASABE 50(5):1585–1593CrossRef Licciardello F, Zema DA, Zimbone SM, Bingner RL (2007) Runoff and soil erosion evaluation by the AnnAGNPS model in a small Mediterranean watershed. Trans ASABE 50(5):1585–1593CrossRef
34.
go back to reference Makkink GF (1957) Testing the Penman formula by means of lysimeters. J Inst Water Eng 11(3):277–288 Makkink GF (1957) Testing the Penman formula by means of lysimeters. J Inst Water Eng 11(3):277–288
35.
go back to reference Martínez-Coba A, Tejero-Juste M (2004) A wind-based qualitative calibration of the Hargreaves ET0 estimation equation in semiarid regions. Agric Water Manag 64(3):251–264CrossRef Martínez-Coba A, Tejero-Juste M (2004) A wind-based qualitative calibration of the Hargreaves ET0 estimation equation in semiarid regions. Agric Water Manag 64(3):251–264CrossRef
36.
go back to reference Mattar MA, Alamoud AI (2015) Artificial neural networks for estimating the hydraulic performance of labyrinth-channel emitters. Comput Electron Agric 114(5):189–201CrossRef Mattar MA, Alamoud AI (2015) Artificial neural networks for estimating the hydraulic performance of labyrinth-channel emitters. Comput Electron Agric 114(5):189–201CrossRef
37.
go back to reference Mattar MA, Alazba AA, Zin El-Abedin TK (2015) Forecasting furrow irrigation infiltration using artificial neural networks. Agric Water Manag 148(1):63–71CrossRef Mattar MA, Alazba AA, Zin El-Abedin TK (2015) Forecasting furrow irrigation infiltration using artificial neural networks. Agric Water Manag 148(1):63–71CrossRef
38.
go back to reference Mehdizadeh S, Behmanesh J, Khalili K (2017) Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Comput Electron Agric 139:103–114CrossRef Mehdizadeh S, Behmanesh J, Khalili K (2017) Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Comput Electron Agric 139:103–114CrossRef
39.
go back to reference Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900CrossRef Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900CrossRef
40.
go back to reference Ozkan C, Kişi O, Akay B (2011) Neural networks with artificial bee colony algorithm for modeling daily reference evapotranspiration. Irrig Sci 29(6):431–441CrossRef Ozkan C, Kişi O, Akay B (2011) Neural networks with artificial bee colony algorithm for modeling daily reference evapotranspiration. Irrig Sci 29(6):431–441CrossRef
41.
go back to reference Popova Z, Kercheva M, Pereira LS (2006) Validation of the FAO methodology for computing ETo with limited data. Application to South Bulgaria. Irrig Drain 55(2):201–215CrossRef Popova Z, Kercheva M, Pereira LS (2006) Validation of the FAO methodology for computing ETo with limited data. Application to South Bulgaria. Irrig Drain 55(2):201–215CrossRef
42.
go back to reference Sabziparvar AA, Tabari H (2010) Regional estimation of reference evapotranspiration in arid and semiarid regions. J Irrig Drain Eng 136(10):724–731CrossRef Sabziparvar AA, Tabari H (2010) Regional estimation of reference evapotranspiration in arid and semiarid regions. J Irrig Drain Eng 136(10):724–731CrossRef
43.
go back to reference Sakthivel NR, Nair BB, Sugumaran V (2012) Soft computing approach to fault diagnosis of centrifugal pump. Appl Soft Comput 12:1574–1581CrossRef Sakthivel NR, Nair BB, Sugumaran V (2012) Soft computing approach to fault diagnosis of centrifugal pump. Appl Soft Comput 12:1574–1581CrossRef
44.
go back to reference Shiri J (2017) Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran. Agric Water Manag 188:101–114CrossRef Shiri J (2017) Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran. Agric Water Manag 188:101–114CrossRef
45.
go back to reference Shiri J, Kişi O, Landeras G, Lopez JJ, Nazemi AH, Stuyt L (2012) Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain). J Hydrol 414–415:302–316CrossRef Shiri J, Kişi O, Landeras G, Lopez JJ, Nazemi AH, Stuyt L (2012) Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain). J Hydrol 414–415:302–316CrossRef
46.
go back to reference Shiri J, Marti P, Singh VP (2014) Evaluation of gene expression programming approaches for estimating daily evaporation through spatial and temporal data scanning. Hydrol Process 28(3):1215–1225CrossRef Shiri J, Marti P, Singh VP (2014) Evaluation of gene expression programming approaches for estimating daily evaporation through spatial and temporal data scanning. Hydrol Process 28(3):1215–1225CrossRef
47.
go back to reference Shiri J, Sadraddini A, Nazemi AH, Kisi O, Landeras G, Fakheri Fard A, Marti P (2014) Generalizability of gene expression programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. J Hydrol 508:1–11CrossRef Shiri J, Sadraddini A, Nazemi AH, Kisi O, Landeras G, Fakheri Fard A, Marti P (2014) Generalizability of gene expression programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. J Hydrol 508:1–11CrossRef
49.
go back to reference Smith M, Allen RG, Monteith JL, Pereira LS, Perrier A, Pruitt WO (1991) Report on the expert consultation on revision of FAO guidelines for crop water requirements, land and water development. Division, FAO, Rome Smith M, Allen RG, Monteith JL, Pereira LS, Perrier A, Pruitt WO (1991) Report on the expert consultation on revision of FAO guidelines for crop water requirements, land and water development. Division, FAO, Rome
50.
go back to reference Tabari H (2010) Evaluation of reference crop evapotranspiration equations in various climates. Water Resour Manag 24:2311–2337CrossRef Tabari H (2010) Evaluation of reference crop evapotranspiration equations in various climates. Water Resour Manag 24:2311–2337CrossRef
51.
go back to reference Tabari H, Talaee P (2011) Local calibration of the Hargreaves and Priestley–Taylor equations for estimating reference evapotranspiration in arid and cold climates of Iran based on the Penman–Monteith model. J Hydrol Eng 16(10):837–845CrossRef Tabari H, Talaee P (2011) Local calibration of the Hargreaves and Priestley–Taylor equations for estimating reference evapotranspiration in arid and cold climates of Iran based on the Penman–Monteith model. J Hydrol Eng 16(10):837–845CrossRef
52.
go back to reference Temesgen B, Allen RG, Jensen DT (1999) Adjusting temperature parameters to reflect well-watered conditions. J Irrig Drain Eng 125(1):26–33CrossRef Temesgen B, Allen RG, Jensen DT (1999) Adjusting temperature parameters to reflect well-watered conditions. J Irrig Drain Eng 125(1):26–33CrossRef
53.
go back to reference Temesgen B, Eching S, Davidoff B, Frame K (2005) Comparison of some reference evapotranspiration equations for California. J Irrig Drain Eng 131(1):73–84CrossRef Temesgen B, Eching S, Davidoff B, Frame K (2005) Comparison of some reference evapotranspiration equations for California. J Irrig Drain Eng 131(1):73–84CrossRef
54.
go back to reference Terzi O (2013) Daily pan evaporation estimation using gene expression programming and adaptive neural-based fuzzy inference system. Neural Comput Appl 23:1035–1044CrossRef Terzi O (2013) Daily pan evaporation estimation using gene expression programming and adaptive neural-based fuzzy inference system. Neural Comput Appl 23:1035–1044CrossRef
55.
go back to reference Todorovic M, Karic B, Pereira LS (2013) Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates. J Hydrol 481:166–176CrossRef Todorovic M, Karic B, Pereira LS (2013) Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates. J Hydrol 481:166–176CrossRef
56.
go back to reference Trajkovic S, Kolakovic S (2009) Evaluation of reference evapotranspiration equations under humid conditions. Water Resour Manag 23:3057–3067CrossRef Trajkovic S, Kolakovic S (2009) Evaluation of reference evapotranspiration equations under humid conditions. Water Resour Manag 23:3057–3067CrossRef
57.
go back to reference Trajkovic S, Kolakovic S (2009) Wind-adjusted Turc for estimating reference evapotranspiration ta humid European locations. Hydrol Res 40(1):45–52CrossRef Trajkovic S, Kolakovic S (2009) Wind-adjusted Turc for estimating reference evapotranspiration ta humid European locations. Hydrol Res 40(1):45–52CrossRef
58.
go back to reference Traore S, Guven A (2013) New algebraic formulations of evapotranspiration extracted from gene-expression programming in the tropical seasonally dry regions of West Africa. Irrig Sci 31(1):1–10CrossRef Traore S, Guven A (2013) New algebraic formulations of evapotranspiration extracted from gene-expression programming in the tropical seasonally dry regions of West Africa. Irrig Sci 31(1):1–10CrossRef
59.
go back to reference Traore S, Wang Y, Kerh T (2010) Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone. Agric Water Manag 97:707–714CrossRef Traore S, Wang Y, Kerh T (2010) Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone. Agric Water Manag 97:707–714CrossRef
60.
go back to reference Valiantzas JD (2006) Simplified versions for the Penman evaporation equation using routine weather data. J Hydrol 331(3–4):690–702CrossRef Valiantzas JD (2006) Simplified versions for the Penman evaporation equation using routine weather data. J Hydrol 331(3–4):690–702CrossRef
61.
62.
go back to reference Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82CrossRef Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82CrossRef
63.
go back to reference Xiaoying L, Erda L (2005) Performance of the Priestley–Taylor equation in the semi-arid climate of North China. Agric Water Manag 71:1–17CrossRef Xiaoying L, Erda L (2005) Performance of the Priestley–Taylor equation in the semi-arid climate of North China. Agric Water Manag 71:1–17CrossRef
64.
go back to reference Xu CY, Singh VP (2002) Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resour Manag 16:197–219CrossRef Xu CY, Singh VP (2002) Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resour Manag 16:197–219CrossRef
65.
go back to reference Yassin MA, Alazba AA, Mattar MA (2016) Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate. Agric Water Manag 163:110–124CrossRef Yassin MA, Alazba AA, Mattar MA (2016) Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate. Agric Water Manag 163:110–124CrossRef
66.
go back to reference Yassin MA, Alazba AA, Mattar MA (2016) Comparison between gene expression programming and traditional models for estimating evapotranspiration under hyper arid conditions. Water Resour 43(2):412–427CrossRef Yassin MA, Alazba AA, Mattar MA (2016) Comparison between gene expression programming and traditional models for estimating evapotranspiration under hyper arid conditions. Water Resour 43(2):412–427CrossRef
67.
go back to reference Yin Y, Wu S, Zheng D, Yang Q (2008) Radiation calibration of FAO56 Penman–Monteith model to estimate reference crop evapotranspiration in China. Agric Water Manag 95:77–84CrossRef Yin Y, Wu S, Zheng D, Yang Q (2008) Radiation calibration of FAO56 Penman–Monteith model to estimate reference crop evapotranspiration in China. Agric Water Manag 95:77–84CrossRef
68.
go back to reference Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133(2):83–89CrossRef Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133(2):83–89CrossRef
Metadata
Title
GEP and MLR approaches for the prediction of reference evapotranspiration
Authors
Mohamed A. Mattar
A. A. Alazba
Publication date
05-03-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 10/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3410-8

Other articles of this Issue 10/2019

Neural Computing and Applications 10/2019 Go to the issue

Premium Partner