Skip to main content
Top

2020 | OriginalPaper | Chapter

6. Ghost Fluid Lattice Boltzmann Methods for Complex Geometries

Authors : Arpit Tiwari, Daniel D. Marsh, Surya P. Vanka

Published in: Immersed Boundary Method

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lattice Boltzmann method (LBM) is a widely recognized alternate numerical approach to simulate flow dynamics. In the conventional approach, the Navier–Stokes equations (conservation of mass, momentum and energy) are solved to obtain velocity, pressure and temperature fields. In LBM, on the other hand, the reduced version of the microscopic Boltzmann kinetic equations is solved numerically to determine particle distribution functions, which are then averaged to obtain macroscopic variables. Accurate enforcement of non-conforming and/or moving boundary conditions has been a challenge for LBM because the primary solution variables (particle distribution functions) are not the macroscopic variables on which boundary conditions are typically imposed. While macroscopic variables can be obtained from the particle distribution functions by weighted averaging, the reverse process is not as straightforward. Several researchers have developed strategies to accurately enforce boundary conditions. In this chapter, we first present an overview of the boundary issues in LBM and various approaches that have been developed to resolve them. We then discuss the implementation of immersed boundary method (IBM) on LBM, with particular emphasis on the ghost fluid approach. This technique based on ghost cells was first introduced to LBM by Tiwari and Vanka (Int J Numer Methods Fluids 69(2):481–498, 2012), who developed the so-called ghost fluid immersed boundary lattice Boltzmann method (GF-IB-LBM) based on extrapolation of particle distribution functions. The method is simple and efficient and is applicable to general boundary conditions. Another key advantage is the strict imposition of hydrodynamic conditions at the boundaries. Additionally, the method is local, thus maintains high parallelism of LBM. The application of this approach on several problems is discussed here, including its parallelization using graphical processing units (GPUs), and its coupling with molecular dynamics (MD) simulations. The chapter ends with a brief discussion on recent advances in this approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Allen MP et al (2004) Introduction to molecular dynamics simulation. Computational soft matter: from synthetic polymers to proteins, vol 23, pp 1–28 Allen MP et al (2004) Introduction to molecular dynamics simulation. Computational soft matter: from synthetic polymers to proteins, vol 23, pp 1–28
go back to reference Balaras E (2004) Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput Fluids 33(3):375–404MATHCrossRef Balaras E (2004) Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput Fluids 33(3):375–404MATHCrossRef
go back to reference Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94 (3):511 Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94 (3):511
go back to reference Chen H, Chen S, Matthaeus WH (1992) Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys Rev A 45(8):R5339CrossRef Chen H, Chen S, Matthaeus WH (1992) Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys Rev A 45(8):R5339CrossRef
go back to reference Chen L, Yu Y, Hou G (2013) Sharp-interface immersed boundary lattice Boltzmann method with reduced spurious-pressure oscillations for moving boundaries. Phys Rev E 87(5):053306CrossRef Chen L, Yu Y, Hou G (2013) Sharp-interface immersed boundary lattice Boltzmann method with reduced spurious-pressure oscillations for moving boundaries. Phys Rev E 87(5):053306CrossRef
go back to reference Chen L, Yu Y, Lu J, Hou G (2014) A comparative study of lattice Boltzmann methods using bounce-back schemes and immersed boundary ones for flow acoustic problems. Int J Numer Methods Fluids 74(6):439–467MathSciNetCrossRef Chen L, Yu Y, Lu J, Hou G (2014) A comparative study of lattice Boltzmann methods using bounce-back schemes and immersed boundary ones for flow acoustic problems. Int J Numer Methods Fluids 74(6):439–467MathSciNetCrossRef
go back to reference Dolean V, Jolivet P, Nataf F (2015) An introduction to domain decomposition methods: algorithms, theory, and parallel implementation, vol 144. SIAM Dolean V, Jolivet P, Nataf F (2015) An introduction to domain decomposition methods: algorithms, theory, and parallel implementation, vol 144. SIAM
go back to reference Dupuis A, Chatelain P, Koumoutsakos P (2008) An immersed boundary-lattice-Boltzmann method for the simulation of the flow past an impulsively started cylinder. J Comput Phys 227(9):4486–4498MathSciNetMATHCrossRef Dupuis A, Chatelain P, Koumoutsakos P (2008) An immersed boundary-lattice-Boltzmann method for the simulation of the flow past an impulsively started cylinder. J Comput Phys 227(9):4486–4498MathSciNetMATHCrossRef
go back to reference Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161(1):35–60 Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161(1):35–60
go back to reference Feng Z-G, Michaelides EE (2004) The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J Comput Phys 195(2):602–628MATHCrossRef Feng Z-G, Michaelides EE (2004) The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J Comput Phys 195(2):602–628MATHCrossRef
go back to reference Feng Z-G, Michaelides EE (2005) Proteus: a direct forcing method in the simulations of particulate flows. J Comput Phys 202(1):20–51MATHCrossRef Feng Z-G, Michaelides EE (2005) Proteus: a direct forcing method in the simulations of particulate flows. J Comput Phys 202(1):20–51MATHCrossRef
go back to reference Filippova O, Hänel D (1998) Grid refinement for lattice-BGK models. J Comput Phys 147(1):219–228MATHCrossRef Filippova O, Hänel D (1998) Grid refinement for lattice-BGK models. J Comput Phys 147(1):219–228MATHCrossRef
go back to reference Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett 56(14):1505CrossRef Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett 56(14):1505CrossRef
go back to reference Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207(2):457–492MATHCrossRef Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207(2):457–492MATHCrossRef
go back to reference Ginzburg I, d’Humieres D (2003) Multireflection boundary conditions for lattice Boltzmann models. Phys Rev E 68(6):066614MathSciNetCrossRef Ginzburg I, d’Humieres D (2003) Multireflection boundary conditions for lattice Boltzmann models. Phys Rev E 68(6):066614MathSciNetCrossRef
go back to reference Glowinski R, Pan T-W, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiph Flow 25(5):755–794 Glowinski R, Pan T-W, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiph Flow 25(5):755–794
go back to reference Goldstein D, Handler R, Sirovich L (1993) Modeling a no-slip flow boundary with an external force field. J Comput Phys 105(2):354–366MATHCrossRef Goldstein D, Handler R, Sirovich L (1993) Modeling a no-slip flow boundary with an external force field. J Comput Phys 105(2):354–366MATHCrossRef
go back to reference Guo Z, Zheng C, Shi B (2002) An extrapolation method for boundary conditions in lattice Boltzmann method. Phys Fluids 14(6):2007–2010MATHCrossRef Guo Z, Zheng C, Shi B (2002) An extrapolation method for boundary conditions in lattice Boltzmann method. Phys Fluids 14(6):2007–2010MATHCrossRef
go back to reference Higuera FJ, Jiménez J (1989) Boltzmann approach to lattice gas simulations. EPL (Europhys Lett) 9(7):663CrossRef Higuera FJ, Jiménez J (1989) Boltzmann approach to lattice gas simulations. EPL (Europhys Lett) 9(7):663CrossRef
go back to reference Jahanshaloo L, Sidik NAC, Fazeli A, Mahmoud Pesaran HA (2016) An overview of boundary implementation in lattice Boltzmann method for computational heat and mass transfer. Int Commun Heat Mass Transfer 78:1–12 Jahanshaloo L, Sidik NAC, Fazeli A, Mahmoud Pesaran HA (2016) An overview of boundary implementation in lattice Boltzmann method for computational heat and mass transfer. Int Commun Heat Mass Transfer 78:1–12
go back to reference Kaneda M, Haruna T, Suga K (2014) Ghost-fluid-based boundary treatment in lattice Boltzmann method and its extension to advancing boundary. Appl Therm Eng 72(1):126–134CrossRef Kaneda M, Haruna T, Suga K (2014) Ghost-fluid-based boundary treatment in lattice Boltzmann method and its extension to advancing boundary. Appl Therm Eng 72(1):126–134CrossRef
go back to reference Kang SK, Hassan YA (2011) A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries. Int J Numer Methods Fluids 66(9):1132–1158MATHCrossRef Kang SK, Hassan YA (2011) A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries. Int J Numer Methods Fluids 66(9):1132–1158MATHCrossRef
go back to reference Khazaeli R, Mortazavi S, Ashrafizaadeh M (2013) Application of a ghost fluid approach for a thermal lattice Boltzmann method. J Comput Phys 250:126–140 Khazaeli R, Mortazavi S, Ashrafizaadeh M (2013) Application of a ghost fluid approach for a thermal lattice Boltzmann method. J Comput Phys 250:126–140
go back to reference Ladd AJC (1994) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J Fluid Mech 271:285–309 Ladd AJC (1994) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J Fluid Mech 271:285–309
go back to reference Lai M-C, Peskin CS (2000) An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J Comput Phys 160(2):705–719MathSciNetMATHCrossRef Lai M-C, Peskin CS (2000) An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J Comput Phys 160(2):705–719MathSciNetMATHCrossRef
go back to reference Lee L, LeVeque RJ (2003) An immersed interface method for incompressible Navier-Stokes equations. SIAM J Sci Comput 25(3):832–856MathSciNetMATHCrossRef Lee L, LeVeque RJ (2003) An immersed interface method for incompressible Navier-Stokes equations. SIAM J Sci Comput 25(3):832–856MathSciNetMATHCrossRef
go back to reference Li X, Jiang F, Hu C (2016) Analysis of the accuracy and pressure oscillation of the lattice Boltzmann method for fluid-solid interactions. Comput Fluids 129:33–52MathSciNetMATHCrossRef Li X, Jiang F, Hu C (2016) Analysis of the accuracy and pressure oscillation of the lattice Boltzmann method for fluid-solid interactions. Comput Fluids 129:33–52MathSciNetMATHCrossRef
go back to reference Luo L-S (2000) Theory of the lattice Boltzmann method: lattice Boltzmann models for nonideal gases. Phys Rev E 62(4):4982MathSciNetCrossRef Luo L-S (2000) Theory of the lattice Boltzmann method: lattice Boltzmann models for nonideal gases. Phys Rev E 62(4):4982MathSciNetCrossRef
go back to reference Majumdar S, Iaccarino G, Durbin P (2001) RANS solvers with adaptive structured boundary non-conforming grids. Annual research briefs, Center for Turbulence Research, pp 353–366 Majumdar S, Iaccarino G, Durbin P (2001) RANS solvers with adaptive structured boundary non-conforming grids. Annual research briefs, Center for Turbulence Research, pp 353–366
go back to reference Marsh DD (2010) Molecular dynamics-lattice Boltzmann hybrid method on graphics processors. University of Illinois at Urbana-Champaign Marsh DD (2010) Molecular dynamics-lattice Boltzmann hybrid method on graphics processors. University of Illinois at Urbana-Champaign
go back to reference McNamara GR, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett 61(20):2332CrossRef McNamara GR, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett 61(20):2332CrossRef
go back to reference Mei R, Luo L-S, Shyy W (1999) An accurate curved boundary treatment in the lattice Boltzmann method. J Comput Phys 155(2):307–330MATHCrossRef Mei R, Luo L-S, Shyy W (1999) An accurate curved boundary treatment in the lattice Boltzmann method. J Comput Phys 155(2):307–330MATHCrossRef
go back to reference Mohd-Yusof J (1997) Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. Annual research briefs, Center for Turbulence Research, pp 317–327 Mohd-Yusof J (1997) Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. Annual research briefs, Center for Turbulence Research, pp 317–327
go back to reference Mozafari-Shamsi M, Sefid M, Imani G (2016a) Developing a ghost fluid lattice Boltzmann method for simulation of thermal Dirichlet and Neumann conditions at curved boundaries. Numer Heat Transfer Part B: Fundam 70(3):251–266 Mozafari-Shamsi M, Sefid M, Imani G (2016a) Developing a ghost fluid lattice Boltzmann method for simulation of thermal Dirichlet and Neumann conditions at curved boundaries. Numer Heat Transfer Part B: Fundam 70(3):251–266
go back to reference Mozafari-Shamsi M, Sefid M, Imani G (2016b) New formulation for the simulation of the conjugate heat transfer at the curved interfaces based on the ghost fluid lattice Boltzmann method. Numer Heat Transfer Part B: Fundam 70(6):559–576 Mozafari-Shamsi M, Sefid M, Imani G (2016b) New formulation for the simulation of the conjugate heat transfer at the curved interfaces based on the ghost fluid lattice Boltzmann method. Numer Heat Transfer Part B: Fundam 70(6):559–576
go back to reference Niu XD, Shu C, Chew YT, Peng Y (2006) A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys Lett A 354(3):173–182MATHCrossRef Niu XD, Shu C, Chew YT, Peng Y (2006) A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys Lett A 354(3):173–182MATHCrossRef
go back to reference Noble DR, Chen S, Georgiadis JG, Buckius RO (1995) A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Phys Fluids 7(1):203–209MATHCrossRef Noble DR, Chen S, Georgiadis JG, Buckius RO (1995) A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Phys Fluids 7(1):203–209MATHCrossRef
go back to reference Peng Y, Shu C, Chew Y-T, Niu XD, Lu X-Y (2006) Application of multi-block approach in the immersed boundary-lattice Boltzmann method for viscous fluid flows. J Comput Phys 218(2):460–478MathSciNetMATHCrossRef Peng Y, Shu C, Chew Y-T, Niu XD, Lu X-Y (2006) Application of multi-block approach in the immersed boundary-lattice Boltzmann method for viscous fluid flows. J Comput Phys 218(2):460–478MathSciNetMATHCrossRef
go back to reference Qian Y-H, d’Humières D, Lallemand P (1992) Lattice BGK models for Navier-Stokes equation. EPL (Europhys Lett) 17(6):479MATHCrossRef Qian Y-H, d’Humières D, Lallemand P (1992) Lattice BGK models for Navier-Stokes equation. EPL (Europhys Lett) 17(6):479MATHCrossRef
go back to reference Schäfer M, Turek S, Durst F, Krause E, Rannacher R (1996) Benchmark computations of laminar flow around a cylinder. In: Flow simulation with high-performance computers II. Springer, German, pp 547–566 Schäfer M, Turek S, Durst F, Krause E, Rannacher R (1996) Benchmark computations of laminar flow around a cylinder. In: Flow simulation with high-performance computers II. Springer, German, pp 547–566
go back to reference Shukla RK, Pantano C, Freund JB (2010) An interface capturing method for the simulation of multi-phase compressible flows. J Comput Phys 229(19):7411–7439MathSciNetMATHCrossRef Shukla RK, Pantano C, Freund JB (2010) An interface capturing method for the simulation of multi-phase compressible flows. J Comput Phys 229(19):7411–7439MathSciNetMATHCrossRef
go back to reference Tian F-B, Luo H, Zhu L, Liao JC, Lu X-Y (2011) An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. J Comput Phys 230(19):7266–7283MathSciNetMATHCrossRef Tian F-B, Luo H, Zhu L, Liao JC, Lu X-Y (2011) An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. J Comput Phys 230(19):7266–7283MathSciNetMATHCrossRef
go back to reference Tiwari A, Vanka SP (2012) A ghost fluid Lattice Boltzmann method for complex geometries. Int J Numer Methods Fluids 69(2):481–498MathSciNetMATHCrossRef Tiwari A, Vanka SP (2012) A ghost fluid Lattice Boltzmann method for complex geometries. Int J Numer Methods Fluids 69(2):481–498MathSciNetMATHCrossRef
go back to reference Tiwari A, Samala R, Vanka SP (2009) Ghost fluid based immersed boundary treatment for lattice Boltzmann method. In: ASME 2009 international mechanical engineering congress and exposition. American Society of Mechanical Engineers, pp 309–313 Tiwari A, Samala R, Vanka SP (2009) Ghost fluid based immersed boundary treatment for lattice Boltzmann method. In: ASME 2009 international mechanical engineering congress and exposition. American Society of Mechanical Engineers, pp 309–313
go back to reference Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209(2):448–476MathSciNetMATHCrossRef Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209(2):448–476MathSciNetMATHCrossRef
go back to reference Wu J, Shu C (2009) Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. J Comput Phys 228(6):1963–1979MATHCrossRef Wu J, Shu C (2009) Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. J Comput Phys 228(6):1963–1979MATHCrossRef
go back to reference Xu L, Tian F-B, Young J, Lai JCS (2018) A novel geometry-adaptive Cartesian grid based immersed boundary-lattice Boltzmann method for fluid-structure interactions at moderate and high Reynolds numbers. J Comput Phys 375:22–56MathSciNetMATHCrossRef Xu L, Tian F-B, Young J, Lai JCS (2018) A novel geometry-adaptive Cartesian grid based immersed boundary-lattice Boltzmann method for fluid-structure interactions at moderate and high Reynolds numbers. J Comput Phys 375:22–56MathSciNetMATHCrossRef
go back to reference Ye T, Mittal R, Udaykumar HS, Shyy W (1999) An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J Comput Phys 156(2):209–240MathSciNetMATHCrossRef Ye T, Mittal R, Udaykumar HS, Shyy W (1999) An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J Comput Phys 156(2):209–240MathSciNetMATHCrossRef
go back to reference Yu D, Mei R, Shyy W (2003) A unified boundary treatment in lattice Boltzmann method. In: 41st aerospace sciences meeting and exhibit, p 953 Yu D, Mei R, Shyy W (2003) A unified boundary treatment in lattice Boltzmann method. In: 41st aerospace sciences meeting and exhibit, p 953
go back to reference Zhang J, Johnson PC, Popel AS (2007) An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys Biol 4(4):285CrossRef Zhang J, Johnson PC, Popel AS (2007) An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys Biol 4(4):285CrossRef
go back to reference Ziegler DP (1993) Boundary conditions for lattice Boltzmann simulations. J Stat Phys 71(5–6):1171–1177MATHCrossRef Ziegler DP (1993) Boundary conditions for lattice Boltzmann simulations. J Stat Phys 71(5–6):1171–1177MATHCrossRef
Metadata
Title
Ghost Fluid Lattice Boltzmann Methods for Complex Geometries
Authors
Arpit Tiwari
Daniel D. Marsh
Surya P. Vanka
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-3940-4_6

Premium Partners