Skip to main content
Top
Published in: Journal of Nanoparticle Research 1/2015

01-01-2015 | Research Paper

Giant magnetism in punched zigzag-edged triangular-shaped graphene nanodisks

Authors: Bal K. Agrawal, S. Agrawal

Published in: Journal of Nanoparticle Research | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We observe, for the first time, a very large magnetism in the nano-sized (7–27 Å) punched graphene nanodisks (PGNDs) i.e., zigzag-edged triangular PGNDs (ZET-PGNDs). A first-principles method has been employed to investigate their electronic and magnetic properties. Similar to a regular or unpunched ZET-GND where the spin value scales with the linear dimension of the ZET-GND arising from the topological frustration of the π bonds and the induced spin distributions in graphene structures, the magnetic moment in a PGND increases with its size very rapidly depending on the type of punching. Two types of the punched nanodisks have been discussed. In one type of PGND, the magnetic moment of the punched out smaller GND is added to the magnetic moment of the host GND and the resultant net magnetism is, thus, equal to the sum of the magnetic moments of the host GND and that of the punched out smaller GND. In the other type of the PGND, the magnetic moment of the punched out smaller GND is subtracted from the magnetic moment of the host GND and the net value of the magnetic moment is the difference of the magnetic moments of the host GND and that of the punched out smaller GND. One may, thus, enhance the magnetism of a GND by making an appropriate choice of the punching. It may have large magnetic moments in the passivated ZET-PGNDs beyond the nanoscale at room temperature. These punched graphene fragments may be employed for the preparation of several kinds of the electronic and spintronic devices possessing exotic features.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
ABINIT is a code of a common project of the University Catholique de Louvain, Corning Incorporated and other contributers.
 
Literature
go back to reference Agrawal BK, Agrawal S (2013) Monitoring of magnetism in passivated/terminated zigzag-edged triangular shaped nanodisks. J Nanoparticle Res 15(10):12CrossRef Agrawal BK, Agrawal S (2013) Monitoring of magnetism in passivated/terminated zigzag-edged triangular shaped nanodisks. J Nanoparticle Res 15(10):12CrossRef
go back to reference Akola J, Heiskanen HP, Manninen M (2008) Edge-dependent selection rules in magic triangular graphene flakes. Phys Rev B 77:193410 (4 pages)CrossRef Akola J, Heiskanen HP, Manninen M (2008) Edge-dependent selection rules in magic triangular graphene flakes. Phys Rev B 77:193410 (4 pages)CrossRef
go back to reference Brey L, Fertig HA, Das Sarma S (2007) Diluted graphene antiferromagnet. Phys Rev Lett 99:116802 (4 pages)CrossRef Brey L, Fertig HA, Das Sarma S (2007) Diluted graphene antiferromagnet. Phys Rev Lett 99:116802 (4 pages)CrossRef
go back to reference Compos LC, Manfrinato VR, Sanchez-Yamagishi JD, Kong J, Jarillo-Herrero P (2009) Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett 9:2600–2604CrossRef Compos LC, Manfrinato VR, Sanchez-Yamagishi JD, Kong J, Jarillo-Herrero P (2009) Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett 9:2600–2604CrossRef
go back to reference Esquinazi P, Spemann D, Höhne R, Setzer A, Han K-H, Butz T (2003) Induced magnetic ordering by proton irradiation in graphite. Phys Rev Lett 91:227201 (4 pages)CrossRef Esquinazi P, Spemann D, Höhne R, Setzer A, Han K-H, Butz T (2003) Induced magnetic ordering by proton irradiation in graphite. Phys Rev Lett 91:227201 (4 pages)CrossRef
go back to reference Ezawa M (2007) Metallic graphene nanodisks: electronic and magnetic properties. Phys Rev B 76:245415 (6 pages)CrossRef Ezawa M (2007) Metallic graphene nanodisks: electronic and magnetic properties. Phys Rev B 76:245415 (6 pages)CrossRef
go back to reference Ezawa M (2008) Coulomb blockade in graphene nanodisks. Phys Rev B 77:155411CrossRef Ezawa M (2008) Coulomb blockade in graphene nanodisks. Phys Rev B 77:155411CrossRef
go back to reference Fernndez-Rossier J, Palacios JJ (2007) Magnetism in graphene nanoislands. Phys Rev Lett 99:177204 (4 pages)CrossRef Fernndez-Rossier J, Palacios JJ (2007) Magnetism in graphene nanoislands. Phys Rev Lett 99:177204 (4 pages)CrossRef
go back to reference Fuchs M, Scheffler M (1999) Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comput Phys Commun 119:67–98CrossRef Fuchs M, Scheffler M (1999) Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comput Phys Commun 119:67–98CrossRef
go back to reference Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65:1920–1923CrossRef Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65:1920–1923CrossRef
go back to reference Gambardella P, Dallmeyer A, Maiti K, Malagoli MC, Eberhardt W, Kern K, Carbone C (2002) Ferromagnetism in one-dimensional monatomic metal chains. Nature 416:301–303CrossRef Gambardella P, Dallmeyer A, Maiti K, Malagoli MC, Eberhardt W, Kern K, Carbone C (2002) Ferromagnetism in one-dimensional monatomic metal chains. Nature 416:301–303CrossRef
go back to reference Hod O, Barone V, Peralta JE, Scuseria GE (2007) Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett 7:2295–2299CrossRef Hod O, Barone V, Peralta JE, Scuseria GE (2007) Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett 7:2295–2299CrossRef
go back to reference Janseens E, Tanaka H, Neukermans S, Silverans RE, Lievens P (2003) Two-dimensional magic numbers in mass abundances of photofragmented bimetallic clusters. New J Phys 5:46CrossRef Janseens E, Tanaka H, Neukermans S, Silverans RE, Lievens P (2003) Two-dimensional magic numbers in mass abundances of photofragmented bimetallic clusters. New J Phys 5:46CrossRef
go back to reference Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48:1425–1428CrossRef Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48:1425–1428CrossRef
go back to reference Kobayashi Y, Fukui K, Enoki T, Kusakabe K (2006) Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Phys Rev 73:125415CrossRef Kobayashi Y, Fukui K, Enoki T, Kusakabe K (2006) Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Phys Rev 73:125415CrossRef
go back to reference Kolehmainen J, Hakkinen H, Manninen M (1997) Metal clusters on an inert surface: a simple model. Z Phys D 40:306–309CrossRef Kolehmainen J, Hakkinen H, Manninen M (1997) Metal clusters on an inert surface: a simple model. Z Phys D 40:306–309CrossRef
go back to reference Krauss B, Nemes Incz P, Skakalova EV, Biro LP, Klitzing KV, Smet JH (2010) Raman scattering at pure graphene zigzag edges. Nano Lett 10:4544–4548CrossRef Krauss B, Nemes Incz P, Skakalova EV, Biro LP, Klitzing KV, Smet JH (2010) Raman scattering at pure graphene zigzag edges. Nano Lett 10:4544–4548CrossRef
go back to reference Lai MY, Wang YL (1998) Direct observation of two-dimensional magic clusters. Phys Rev 81:164–167 Lai MY, Wang YL (1998) Direct observation of two-dimensional magic clusters. Phys Rev 81:164–167
go back to reference Lieb EH (1989) Two theorems on the Hubbard model. Phys Rev Lett 62:1201–1204CrossRef Lieb EH (1989) Two theorems on the Hubbard model. Phys Rev Lett 62:1201–1204CrossRef
go back to reference Mermin ND, Wagner H (1966) Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett 17:1133–1136CrossRef Mermin ND, Wagner H (1966) Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett 17:1133–1136CrossRef
go back to reference Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954–17961CrossRef Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954–17961CrossRef
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRef
go back to reference Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger S, Kim P, Geim AK (2007) Room-temperature quantum hall effect in graphene. Science 315:1379CrossRef Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger S, Kim P, Geim AK (2007) Room-temperature quantum hall effect in graphene. Science 315:1379CrossRef
go back to reference Ohldag H, Tyliszczak T, Höhne R, Spemann D, Esquinazi P, Ungureanu M, Butz T (2007) π-electron ferromagnetism in metal-free carbon probed by soft X-ray dichroism. Phys Rev Lett 98:187204 (4 pages)CrossRef Ohldag H, Tyliszczak T, Höhne R, Spemann D, Esquinazi P, Ungureanu M, Butz T (2007) π-electron ferromagnetism in metal-free carbon probed by soft X-ray dichroism. Phys Rev Lett 98:187204 (4 pages)CrossRef
go back to reference Owens F (2006) Electronic and magnetic properties of graphene nanoribbons. Mol Phys 104:3107–3109CrossRef Owens F (2006) Electronic and magnetic properties of graphene nanoribbons. Mol Phys 104:3107–3109CrossRef
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef
go back to reference Reimann SM, Koskinen M, Helgesson J, Lindelof PE, Manninen M (1998) Deformation of quasi-two-dimensional electron gas clusters. Phys Rev B 58:8111–8119CrossRef Reimann SM, Koskinen M, Helgesson J, Lindelof PE, Manninen M (1998) Deformation of quasi-two-dimensional electron gas clusters. Phys Rev B 58:8111–8119CrossRef
go back to reference Sahin H, Senger RT, Ciraci S (2010) Spintronic properties of zigzag-edged triangular graphene flakes. J Appl Phys 108:074301 (5 pages)CrossRef Sahin H, Senger RT, Ciraci S (2010) Spintronic properties of zigzag-edged triangular graphene flakes. J Appl Phys 108:074301 (5 pages)CrossRef
go back to reference Schäffel F, Warner JH, Bachmatiuk A, Rellinghaus B, Büchner B, Schultz L, Rümmeli MH (2009) Shedding light on the crystallographic etching of multi-layer graphene at the atomic scale. Nano Res 2:695–705CrossRef Schäffel F, Warner JH, Bachmatiuk A, Rellinghaus B, Büchner B, Schultz L, Rümmeli MH (2009) Shedding light on the crystallographic etching of multi-layer graphene at the atomic scale. Nano Res 2:695–705CrossRef
go back to reference Son YW, Cohen ML, Louie SG (2006a) Half-metallic graphene nanoribbons. Nature 444:347–349CrossRef Son YW, Cohen ML, Louie SG (2006a) Half-metallic graphene nanoribbons. Nature 444:347–349CrossRef
go back to reference Son YW, Cohen ML, Louie SG (2006b) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803 4 pagesCrossRef Son YW, Cohen ML, Louie SG (2006b) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803 4 pagesCrossRef
go back to reference Tombros N, Jozsa C, Popinciuc M, Jonkman HT, van Wees BJ (2007) Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448:571–574CrossRef Tombros N, Jozsa C, Popinciuc M, Jonkman HT, van Wees BJ (2007) Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448:571–574CrossRef
go back to reference Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRef Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRef
go back to reference Voznyy O, Guclu AD, Potasz P, Hawrylak P (2011) Effect of edge reconstruction and passivation on zero-energy states and magnetism in triangular graphene quantum dots with zigzag edges. Phys Rev B 83:165417 (5 pages)CrossRef Voznyy O, Guclu AD, Potasz P, Hawrylak P (2011) Effect of edge reconstruction and passivation on zero-energy states and magnetism in triangular graphene quantum dots with zigzag edges. Phys Rev B 83:165417 (5 pages)CrossRef
go back to reference Wang WL, Meng S, Kaxiras E (2008) Graphene nanoflakes with large spin. Nano Lett 8:241–245CrossRef Wang WL, Meng S, Kaxiras E (2008) Graphene nanoflakes with large spin. Nano Lett 8:241–245CrossRef
go back to reference Wimmer M, Adagideli I, Berber S, Tománek D, Richter K (2007) Spin currents in rough graphene nanoribbons: universal fluctuations and spin injection, arXiv:0709.3244 (pages 2–2b) Wimmer M, Adagideli I, Berber S, Tománek D, Richter K (2007) Spin currents in rough graphene nanoribbons: universal fluctuations and spin injection, arXiv:0709.3244 (pages 2–2b)
go back to reference Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495CrossRef Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495CrossRef
Metadata
Title
Giant magnetism in punched zigzag-edged triangular-shaped graphene nanodisks
Authors
Bal K. Agrawal
S. Agrawal
Publication date
01-01-2015
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 1/2015
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-014-2857-5

Other articles of this Issue 1/2015

Journal of Nanoparticle Research 1/2015 Go to the issue

Premium Partners