Skip to main content
Top

2024 | OriginalPaper | Chapter

5. Global Nonlinear Dynamics: Challenges in the Analysis and Safety of Deterministic or Stochastic Systems

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter provides a state-of-the-art, qualitative and application-oriented overview of topics in the global nonlinear dynamics of mechanical systems and structures. Models, methods, phenomena, practical examples are addressed with the aim of highlighting the enormous potential of global analysis as regards in-depth description and understanding of systems’ nonlinear dynamics, and a reliable assessment of their actual load carrying capacity. Challenges and prospects are outlined, as mostly occurring when moving from the low-order, deterministic, models mostly dealt with so far within the underlying scientific community, to the multi-dimensional, non-deterministic, systems and structures encountered in engineering and characterizing the real world. General items addressed include fundamentals of global dynamics, use of dynamical integrity as a reliable and effective computational-geometrical tool for investigating and controlling response robustness, computational challenges for multi-dof systems, need for refined reduced order modeling, influence of parametric uncertainty and noise.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
This section is based on the work done by Dr. Kaio C.B. Benedetti in his Ph.D. dissertation [Benedetti, 2022] and ensuing papers listed in the References.
 
Literature
go back to reference Agarwal, V., Yorke, J. A., & Balachandran, B. (2020). Noise-induced chaotic-attractor escape route. Nonlinear Dynamics, 65(6), 1–11. Agarwal, V., Yorke, J. A., & Balachandran, B. (2020). Noise-induced chaotic-attractor escape route. Nonlinear Dynamics, 65(6), 1–11.
go back to reference Alsaleem, F. M., & Younis, M. I. (2011). Integrity analysis of electrically actuated resonators with delayed feedback controller. Journal of Dynamic Systems, Measurement, and Control, 133(3), 031011.CrossRef Alsaleem, F. M., & Younis, M. I. (2011). Integrity analysis of electrically actuated resonators with delayed feedback controller. Journal of Dynamic Systems, Measurement, and Control, 133(3), 031011.CrossRef
go back to reference Alsaleem, F. M., Younis, M. I., & Ruzziconi, L. (2010). An experimental and theoretical investigation of dynamical pull-in in MEMS resonators actuated electrostatically. Journal of Microelectromechanical Systems, 19(4), 794–806.CrossRef Alsaleem, F. M., Younis, M. I., & Ruzziconi, L. (2010). An experimental and theoretical investigation of dynamical pull-in in MEMS resonators actuated electrostatically. Journal of Microelectromechanical Systems, 19(4), 794–806.CrossRef
go back to reference Belardinelli, P., & Lenci, S. (2016). An efficient parallel implementation of cell mapping methods for mdof systems. Nonlinear Dynamics, 86(4), 2279–2290.MathSciNetCrossRef Belardinelli, P., & Lenci, S. (2016). An efficient parallel implementation of cell mapping methods for mdof systems. Nonlinear Dynamics, 86(4), 2279–2290.MathSciNetCrossRef
go back to reference Belardinelli, P., Lenci, S., & Rega, G. (2018). Seamless variation of isometric and anisometric dynamical integrity measures in basins’ erosion. Communications in Nonlinear Science and Numerical Simulation, 56, 499–507.MathSciNetCrossRef Belardinelli, P., Lenci, S., & Rega, G. (2018). Seamless variation of isometric and anisometric dynamical integrity measures in basins’ erosion. Communications in Nonlinear Science and Numerical Simulation, 56, 499–507.MathSciNetCrossRef
go back to reference Belardinelli, P., Sajadi, B., Lenci, S., & Alijani, F. (2019). Global dynamics and integrity of a micro-plate pressure sensor. Communications in Nonlinear Science and Numerical Simulation, 69, 432–444.CrossRef Belardinelli, P., Sajadi, B., Lenci, S., & Alijani, F. (2019). Global dynamics and integrity of a micro-plate pressure sensor. Communications in Nonlinear Science and Numerical Simulation, 69, 432–444.CrossRef
go back to reference Benedetti, K. C. B., & Gonçalves, P. B. (2022). Nonlinear response of an imperfect microcantilever static and dynamically actuated considering uncertainties and noise. Nonlinear Dynamics, 107(2), 1725–1754.CrossRef Benedetti, K. C. B., & Gonçalves, P. B. (2022). Nonlinear response of an imperfect microcantilever static and dynamically actuated considering uncertainties and noise. Nonlinear Dynamics, 107(2), 1725–1754.CrossRef
go back to reference Benedetti, K. C. B., Gonçalves, P. B., & Silva, F. M. A. (2020). Nonlinear oscillations and bifurcations of a multistable truss and dynamic integrity assessment via a Monte Carlo approach. Meccanica, 55, 2623–2657.MathSciNetCrossRef Benedetti, K. C. B., Gonçalves, P. B., & Silva, F. M. A. (2020). Nonlinear oscillations and bifurcations of a multistable truss and dynamic integrity assessment via a Monte Carlo approach. Meccanica, 55, 2623–2657.MathSciNetCrossRef
go back to reference Benedetti, K. C. B., Gonçalves, P. B., Lenci, S., & Rega, G. (2023a). Global analysis of stochastic and parametric uncertainty in nonlinear dynamical systems: Adaptative phase-space discretization strategy, with application to Helmholtz oscillator. Nonlinear Dynamics, 111, 15675–15703. Benedetti, K. C. B., Gonçalves, P. B., Lenci, S., & Rega, G. (2023a). Global analysis of stochastic and parametric uncertainty in nonlinear dynamical systems: Adaptative phase-space discretization strategy, with application to Helmholtz oscillator. Nonlinear Dynamics, 111, 15675–15703.
go back to reference Benedetti, K. C. B., Gonçalves, P. B., Lenci, S., & Rega, G. (2023b). Parameter uncertainty and noise effects on the global dynamics of an electrically actuated microarch. Journal of Micromechanics and Microengineering, 33, 064001.CrossRef Benedetti, K. C. B., Gonçalves, P. B., Lenci, S., & Rega, G. (2023b). Parameter uncertainty and noise effects on the global dynamics of an electrically actuated microarch. Journal of Micromechanics and Microengineering, 33, 064001.CrossRef
go back to reference Benedetti, K. C. B. (2022). Global analysis of stochastic nonlinear dynamical systems: An adaptative phase-space discretization strategy. Ph.D. thesis, Pontifical Catholic University, Rio de Janeiro. Benedetti, K. C. B. (2022). Global analysis of stochastic nonlinear dynamical systems: An adaptative phase-space discretization strategy. Ph.D. thesis, Pontifical Catholic University, Rio de Janeiro.
go back to reference Benedetti, K. C. B., Gonçalves, P. B., Lenci, S., & Rega, G. (2022). An operator methodology for the global dynamic analysis of stochastic nonlinear systems. Theoretical and Applied Mechanics Letters, 100419. Benedetti, K. C. B., Gonçalves, P. B., Lenci, S., & Rega, G. (2022). An operator methodology for the global dynamic analysis of stochastic nonlinear systems. Theoretical and Applied Mechanics Letters, 100419.
go back to reference Brunton, S. L., Budišić, M., Kaiser, E., & Kutz, J. N. (2022). Modern Koopman theory for dynamical systems. SIAM Review, 64, 229–340.MathSciNetCrossRef Brunton, S. L., Budišić, M., Kaiser, E., & Kutz, J. N. (2022). Modern Koopman theory for dynamical systems. SIAM Review, 64, 229–340.MathSciNetCrossRef
go back to reference Brzeski, P., & Perlikowski, P. (2019). Sample-based methods of analysis for multistable dynamical systems. Archives of Computational Methods in Engineering, 26, 1515–1545.MathSciNetCrossRef Brzeski, P., & Perlikowski, P. (2019). Sample-based methods of analysis for multistable dynamical systems. Archives of Computational Methods in Engineering, 26, 1515–1545.MathSciNetCrossRef
go back to reference Brzeski, P., Lazarek, M., Kapitaniak, T., Kurths, J., & Perlikowski, P. (2016). Basin stability approach for quantifying responses of multistable systems with parameters mismatch. Meccanica, 51(11), 2713–2726.MathSciNetCrossRef Brzeski, P., Lazarek, M., Kapitaniak, T., Kurths, J., & Perlikowski, P. (2016). Basin stability approach for quantifying responses of multistable systems with parameters mismatch. Meccanica, 51(11), 2713–2726.MathSciNetCrossRef
go back to reference Brzeski, P., Wojewoda, J., Kapitaniak, T., Kurths, J., & Perlikowski, P. (2017). Sample-based approach can outperform the classical dynamical analysis– experimental confirmation of the basin stability method. Scientific Reports, 7, 6121.CrossRef Brzeski, P., Wojewoda, J., Kapitaniak, T., Kurths, J., & Perlikowski, P. (2017). Sample-based approach can outperform the classical dynamical analysis– experimental confirmation of the basin stability method. Scientific Reports, 7, 6121.CrossRef
go back to reference Brzeski, P., Belardinelli, P., Lenci, S., & Perlikowski, P. (2018a). Revealing compactness of basins of attraction of multi-DoF dynamical systems. Mechanical Systems and Signal Processing, 111, 348–361.CrossRef Brzeski, P., Belardinelli, P., Lenci, S., & Perlikowski, P. (2018a). Revealing compactness of basins of attraction of multi-DoF dynamical systems. Mechanical Systems and Signal Processing, 111, 348–361.CrossRef
go back to reference Brzeski, P., Kurths, J., & Perlikowski, P. (2018b). Time dependent stability margin in multistable systems. Chaos, 28, 093104.MathSciNetCrossRef Brzeski, P., Kurths, J., & Perlikowski, P. (2018b). Time dependent stability margin in multistable systems. Chaos, 28, 093104.MathSciNetCrossRef
go back to reference Buza, G., Jain, S., & Haller, G. (2021). Using spectral submanifolds for optimal mode selection in nonlinear model reduction. Proceedings of the Royal Society A, 477(2246), 20200725.MathSciNetCrossRef Buza, G., Jain, S., & Haller, G. (2021). Using spectral submanifolds for optimal mode selection in nonlinear model reduction. Proceedings of the Royal Society A, 477(2246), 20200725.MathSciNetCrossRef
go back to reference Carvalho, E. C., Gonçalves, P. B., & Rega, G. (2017). Multiple internal resonances and nonplanar dynamics of a cruciform beam with low torsional stiffness. International Journal of Solids and Structures, 121, 117–134.CrossRef Carvalho, E. C., Gonçalves, P. B., & Rega, G. (2017). Multiple internal resonances and nonplanar dynamics of a cruciform beam with low torsional stiffness. International Journal of Solids and Structures, 121, 117–134.CrossRef
go back to reference Cenedese, M., Axås, J., Bäuerlein, B., Avila, K., & Haller, G. (2022a). Data-driven modeling and prediction of nonlinearizable dynamics via spectral submanifolds. Nature Communications, 13, 872.CrossRef Cenedese, M., Axås, J., Bäuerlein, B., Avila, K., & Haller, G. (2022a). Data-driven modeling and prediction of nonlinearizable dynamics via spectral submanifolds. Nature Communications, 13, 872.CrossRef
go back to reference Cenedese, M., Axås, J., Yang, H., Eriten, M., & Haller, G. (2022b). Data-driven nonlinear model reduction to spectral submanifolds in mechanical systems. Philosophical Transactions of the Royal Society A, 380, 20210194.MathSciNetCrossRef Cenedese, M., Axås, J., Yang, H., Eriten, M., & Haller, G. (2022b). Data-driven nonlinear model reduction to spectral submanifolds in mechanical systems. Philosophical Transactions of the Royal Society A, 380, 20210194.MathSciNetCrossRef
go back to reference Chandrashekar, A., Belardinelli, P., Staufer, U., & Alijani, F. (2019). Robustness of attractors in tapping mode atomic force microscopy. Nonlinear Dynamics, 97, 1137–1158.CrossRef Chandrashekar, A., Belardinelli, P., Staufer, U., & Alijani, F. (2019). Robustness of attractors in tapping mode atomic force microscopy. Nonlinear Dynamics, 97, 1137–1158.CrossRef
go back to reference Cilenti, L., & Balachandran, B. (2021). Transient probability in basins of noise influenced responses of mono and coupled Duffing oscillators. Chaos, 31(6), 063117.MathSciNetCrossRef Cilenti, L., & Balachandran, B. (2021). Transient probability in basins of noise influenced responses of mono and coupled Duffing oscillators. Chaos, 31(6), 063117.MathSciNetCrossRef
go back to reference Coaquira, J. C., Cardoso, D. C. T., Gonçalves, P. B., & Orlando, D. (2021). Parametric instability and nonlinear oscillations of an FRP channel section column under axial load. Nonlinear Dynamics, 103, 3557–3580.CrossRef Coaquira, J. C., Cardoso, D. C. T., Gonçalves, P. B., & Orlando, D. (2021). Parametric instability and nonlinear oscillations of an FRP channel section column under axial load. Nonlinear Dynamics, 103, 3557–3580.CrossRef
go back to reference Črnjarić-Žic, N., Maćešić, S., & Mezić, I. (2020). Koopman operator spectrum for random dynamical systems. Journal of Nonlinear Science, 30(5), 2007–2056.MathSciNetCrossRef Črnjarić-Žic, N., Maćešić, S., & Mezić, I. (2020). Koopman operator spectrum for random dynamical systems. Journal of Nonlinear Science, 30(5), 2007–2056.MathSciNetCrossRef
go back to reference Cui, J., Jiang, W. A., Xia, Z. W., & Chen, L. Q. (2019). Non-stationary response of variable-mass Duffing oscillator with mass disturbance modeled as Gaussian white noise. Physica A: Statistical Mechanucs and Its Applications, 526, 121018.MathSciNetCrossRef Cui, J., Jiang, W. A., Xia, Z. W., & Chen, L. Q. (2019). Non-stationary response of variable-mass Duffing oscillator with mass disturbance modeled as Gaussian white noise. Physica A: Statistical Mechanucs and Its Applications, 526, 121018.MathSciNetCrossRef
go back to reference Dankowicz, H., & Schilder, F. (2013). Recipes for continuation. Society for Industrial and Applied Mathematics.CrossRef Dankowicz, H., & Schilder, F. (2013). Recipes for continuation. Society for Industrial and Applied Mathematics.CrossRef
go back to reference Daza, A., Wagemakers, A., Georgeot, B., Guery-Odelin, D., & Sanjuán, M. A. F. (2016). Basin entropy: A new tool to analyze uncertainty in dynamical systems. Scientific Reports, 6, 31416.CrossRef Daza, A., Wagemakers, A., Georgeot, B., Guery-Odelin, D., & Sanjuán, M. A. F. (2016). Basin entropy: A new tool to analyze uncertainty in dynamical systems. Scientific Reports, 6, 31416.CrossRef
go back to reference De Freitas, M. S. T., Viana, R. L., & Grebogi, C. (2003). Erosion of the safe basin for the transversal oscillations of a suspension bridge. Chaos, Solitons, & Fractals, 18(4), 829–841.CrossRef De Freitas, M. S. T., Viana, R. L., & Grebogi, C. (2003). Erosion of the safe basin for the transversal oscillations of a suspension bridge. Chaos, Solitons, & Fractals, 18(4), 829–841.CrossRef
go back to reference Dellnitz, M., & Hohmann, A. (1997). A subdivision algorithm for the computation of unstable manifolds and global attractors. Numerical Mathematics, 75, 293–317.MathSciNetCrossRef Dellnitz, M., & Hohmann, A. (1997). A subdivision algorithm for the computation of unstable manifolds and global attractors. Numerical Mathematics, 75, 293–317.MathSciNetCrossRef
go back to reference Dellnitz, M., & Junge, O. (1999). On the approximation of complicated dynamical behavior. SIAM Journal of Numerical Analysis, 36, 491–515.MathSciNetCrossRef Dellnitz, M., & Junge, O. (1999). On the approximation of complicated dynamical behavior. SIAM Journal of Numerical Analysis, 36, 491–515.MathSciNetCrossRef
go back to reference Dellnitz, M., Froyland, G., & Junge, O. (2001). The algorithms behind GAIO—set oriented numerical methods for dynamical systems. In B. Fiedler (Ed.), Ergodic theory, analysis, and efficient simulation of dynamical systems (pp. 145–174). Springer.CrossRef Dellnitz, M., Froyland, G., & Junge, O. (2001). The algorithms behind GAIO—set oriented numerical methods for dynamical systems. In B. Fiedler (Ed.), Ergodic theory, analysis, and efficient simulation of dynamical systems (pp. 145–174). Springer.CrossRef
go back to reference Dellnitz, M., Klus, S., & Ziessler, A. (2017). A set-oriented numerical approach for dynamical systems with parameter uncertainty. SIAM Journal of Applied Dynamical Systems, 16(1), 120–138.MathSciNetCrossRef Dellnitz, M., Klus, S., & Ziessler, A. (2017). A set-oriented numerical approach for dynamical systems with parameter uncertainty. SIAM Journal of Applied Dynamical Systems, 16(1), 120–138.MathSciNetCrossRef
go back to reference Dowell, E. (2023). Reduced order modeling: A personal journey. Nonlinear Dynamics, 111, 9699–9720.CrossRef Dowell, E. (2023). Reduced order modeling: A personal journey. Nonlinear Dynamics, 111, 9699–9720.CrossRef
go back to reference Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N. V., Leonov, G. A., & Prasad, A. (2016). Hidden attractors in dynamical systems. Physics Reports, 637, 1–50.MathSciNetCrossRef Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N. V., Leonov, G. A., & Prasad, A. (2016). Hidden attractors in dynamical systems. Physics Reports, 637, 1–50.MathSciNetCrossRef
go back to reference Eason, R. P., & Dick, A. J. (2014). A parallelized multi-degrees-of-freedom cell map method. Nonlinear Dynamics, 77(3), 467–479.CrossRef Eason, R. P., & Dick, A. J. (2014). A parallelized multi-degrees-of-freedom cell map method. Nonlinear Dynamics, 77(3), 467–479.CrossRef
go back to reference Eason, R. P., Dick, A. J., & Nagarajaiah, S. (2014). Numerical investigation of coexisting high and low amplitude responses and safe basin erosion for a coupled linear oscillator and nonlinear absorber system. Journal of Sound and Vibration, 333, 3490–3504.CrossRef Eason, R. P., Dick, A. J., & Nagarajaiah, S. (2014). Numerical investigation of coexisting high and low amplitude responses and safe basin erosion for a coupled linear oscillator and nonlinear absorber system. Journal of Sound and Vibration, 333, 3490–3504.CrossRef
go back to reference Engel, A., Ezra, T., Gendelman, O. V., & Fidlin, A. (2023). Escape of two-DOF dynamical system from the potential well. Nonlinear Dynamics, 111, 3019–3034.CrossRef Engel, A., Ezra, T., Gendelman, O. V., & Fidlin, A. (2023). Escape of two-DOF dynamical system from the potential well. Nonlinear Dynamics, 111, 3019–3034.CrossRef
go back to reference Froyland, G., & Koltai, P. (2017). Estimating long-term behavior of periodically driven flows without trajectory integration. Nonlinearity, 30(5), 1948–1986.MathSciNetCrossRef Froyland, G., & Koltai, P. (2017). Estimating long-term behavior of periodically driven flows without trajectory integration. Nonlinearity, 30(5), 1948–1986.MathSciNetCrossRef
go back to reference Gerlach, R., Ziessler, A., Eckhardt, B., & Dellnitz, M. (2020). A set-oriented path following method for the approximation of parameter dependent attractors. SIAM Journal of Applied Dynamical Systems, 19(1), 705–723.MathSciNetCrossRef Gerlach, R., Ziessler, A., Eckhardt, B., & Dellnitz, M. (2020). A set-oriented path following method for the approximation of parameter dependent attractors. SIAM Journal of Applied Dynamical Systems, 19(1), 705–723.MathSciNetCrossRef
go back to reference Gonçalves, P. B., & Santee, D. M. (2008). Influence of uncertainties on the dynamic buckling loads of structures liable to asymmetric post-buckling behavior. Mathematical Problems in Engineering, Article ID 490137. Gonçalves, P. B., & Santee, D. M. (2008). Influence of uncertainties on the dynamic buckling loads of structures liable to asymmetric post-buckling behavior. Mathematical Problems in Engineering, Article ID 490137.
go back to reference Gonçalves, P. B., Silva, F. M. A., Rega, G., & Lenci, S. (2011). Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell. Nonlinear Dynamics, 63, 61–82.MathSciNetCrossRef Gonçalves, P. B., Silva, F. M. A., Rega, G., & Lenci, S. (2011). Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell. Nonlinear Dynamics, 63, 61–82.MathSciNetCrossRef
go back to reference Gonçalves, P. B., Orlando, D., Lenci, S., & Rega, G. (2018). Nonlinear dynamics, safety and control of structures liable to interactive unstable buckling. In S. Lenci & G. Rega (eds.), Global nonlinear dynamics for engineering design and system safety, CISM Courses and Lectures (No. 588, pp. 167–228). Springer. Gonçalves, P. B., Orlando, D., Lenci, S., & Rega, G. (2018). Nonlinear dynamics, safety and control of structures liable to interactive unstable buckling. In S. Lenci & G. Rega (eds.), Global nonlinear dynamics for engineering design and system safety, CISM Courses and Lectures (No. 588, pp. 167–228). Springer.
go back to reference Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurcation of vector fields. Springer.CrossRef Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurcation of vector fields. Springer.CrossRef
go back to reference Guo, T. D., & Rega, G. (2023). Reduced order modeling of geometrically nonlinear structures. Part II: Correspondence and unified perspectives on different reduction techniques. Nonlinear Dynamics, 111, 19655–19684. Guo, T. D., & Rega, G. (2023). Reduced order modeling of geometrically nonlinear structures. Part II: Correspondence and unified perspectives on different reduction techniques. Nonlinear Dynamics, 111, 19655–19684.
go back to reference Habib, G. (2021). Dynamical integrity assessment of stable equilibria: A new rapid iterative procedure. Nonlinear Dynamics, 106, 2073–2096.CrossRef Habib, G. (2021). Dynamical integrity assessment of stable equilibria: A new rapid iterative procedure. Nonlinear Dynamics, 106, 2073–2096.CrossRef
go back to reference Haller, G., & Ponsioen, S. (2016). Nonlinear normal modes and spectral submanifolds: Existence, uniqueness and use in model reduction. Nonlinear Dynamics, 86(3), 1493–1534.MathSciNetCrossRef Haller, G., & Ponsioen, S. (2016). Nonlinear normal modes and spectral submanifolds: Existence, uniqueness and use in model reduction. Nonlinear Dynamics, 86(3), 1493–1534.MathSciNetCrossRef
go back to reference Haller, G., & Ponsioen, S. (2017). Exact model reduction by a slow–fast decomposition of nonlinear mechanical systems. Nonlinear Dynamics, 90(1), 617–647.MathSciNetCrossRef Haller, G., & Ponsioen, S. (2017). Exact model reduction by a slow–fast decomposition of nonlinear mechanical systems. Nonlinear Dynamics, 90(1), 617–647.MathSciNetCrossRef
go back to reference Han, X., & Kloeden, P. E. (2017). Random ordinary differential equations and their numerical solution (Vol. 85). Springer. Han, X., & Kloeden, P. E. (2017). Random ordinary differential equations and their numerical solution (Vol. 85). Springer.
go back to reference Han, Q., Xu, W., Hao, H., & Yue, X. (2020). Global analysis of stochastic systems by the digraph cell mapping method based on short-time gaussian approximation. International Journal of Bifurcation and Chaos, 30(5), 2050071.MathSciNetCrossRef Han, Q., Xu, W., Hao, H., & Yue, X. (2020). Global analysis of stochastic systems by the digraph cell mapping method based on short-time gaussian approximation. International Journal of Bifurcation and Chaos, 30(5), 2050071.MathSciNetCrossRef
go back to reference Haro, A., Canadell, M., Figueras, J. L., Luque, A., & Mondelo, J. M. (2016). The parameterization method for invariant manifolds. Springer.CrossRef Haro, A., Canadell, M., Figueras, J. L., Luque, A., & Mondelo, J. M. (2016). The parameterization method for invariant manifolds. Springer.CrossRef
go back to reference He, Q., Xu, W., Rong, H., & Fang, T. (2004). Stochastic bifurcation in Duffing–Van der Pol oscillators. Physica A. Statistical Mechanics and its Applications, 338(3–4), 319–334. He, Q., Xu, W., Rong, H., & Fang, T. (2004). Stochastic bifurcation in Duffing–Van der Pol oscillators. Physica A. Statistical Mechanics and its Applications, 338(3–4), 319–334.
go back to reference Hsu, C. S. (1981). A generalized theory of cell-to-cell mapping for nonlinear dynamical systems. Journal of Applied Mechanics, 48, 634–642.MathSciNetCrossRef Hsu, C. S. (1981). A generalized theory of cell-to-cell mapping for nonlinear dynamical systems. Journal of Applied Mechanics, 48, 634–642.MathSciNetCrossRef
go back to reference Hsu, C. S. (1987). Cell to cell mapping: A method of global analysis for nonlinear systems. Springer.CrossRef Hsu, C. S. (1987). Cell to cell mapping: A method of global analysis for nonlinear systems. Springer.CrossRef
go back to reference Hsu, C. S. (1995). Global analysis of dynamical systems using posets and digraphs. International Journal of Bifurcation and Chaos, 5(4), 1085–1118.MathSciNetCrossRef Hsu, C. S. (1995). Global analysis of dynamical systems using posets and digraphs. International Journal of Bifurcation and Chaos, 5(4), 1085–1118.MathSciNetCrossRef
go back to reference Jain, S., & Haller, G. (2022). How to compute invariant manifolds and their reduced dynamics in high-dimensional finite-element models? Nonlinear Dynamics, 107, 1417–1450.CrossRef Jain, S., & Haller, G. (2022). How to compute invariant manifolds and their reduced dynamics in high-dimensional finite-element models? Nonlinear Dynamics, 107, 1417–1450.CrossRef
go back to reference Karmi, G., Kravetc, P., & Gendelman, O. V. (2021). Analytic exploration of safe basins in a benchmark problem of forced escape. Nonlinear Dynamics, 106, 1573–1589.CrossRef Karmi, G., Kravetc, P., & Gendelman, O. V. (2021). Analytic exploration of safe basins in a benchmark problem of forced escape. Nonlinear Dynamics, 106, 1573–1589.CrossRef
go back to reference Kerschen, G., (ed.). (2014). Modal analysis of nonlinear mechanical systems. CISM Courses and Lectures (No. 555). Springer. Kerschen, G., (ed.). (2014). Modal analysis of nonlinear mechanical systems. CISM Courses and Lectures (No. 555). Springer.
go back to reference Klus, S., Koltai, P., & Schütte, C. (2015). On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 3(1), 51–79.MathSciNet Klus, S., Koltai, P., & Schütte, C. (2015). On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 3(1), 51–79.MathSciNet
go back to reference Koltai, P. (2011). A stochastic approach for computing the domain of attraction without trajectory simulation. Discrete and Continuous Dynamical Systems, supplement, 854–863. Koltai, P. (2011). A stochastic approach for computing the domain of attraction without trajectory simulation. Discrete and Continuous Dynamical Systems, supplement, 854–863.
go back to reference Lenci, S., & Rega, G. (1998). A procedure for reducing the chaotic response region in an impact mechanical system. Nonlinear Dynamics, 15, 391–409.MathSciNetCrossRef Lenci, S., & Rega, G. (1998). A procedure for reducing the chaotic response region in an impact mechanical system. Nonlinear Dynamics, 15, 391–409.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (2003a). Optimal control of homoclinic bifurcation: Theoretical treatment and practical reduction of safe basin erosion in the Helmholtz oscillator. Journal of Vibration and Control, 9, 281–315.MathSciNetCrossRef Lenci, S., & Rega, G. (2003a). Optimal control of homoclinic bifurcation: Theoretical treatment and practical reduction of safe basin erosion in the Helmholtz oscillator. Journal of Vibration and Control, 9, 281–315.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (2003b). Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dynamics, 33, 71–86.MathSciNetCrossRef Lenci, S., & Rega, G. (2003b). Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dynamics, 33, 71–86.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (2003c). Regular nonlinear dynamics and bifurcations of an impacting system under general periodic excitation. Nonlinear Dynamics, 34, 249–268.MathSciNetCrossRef Lenci, S., & Rega, G. (2003c). Regular nonlinear dynamics and bifurcations of an impacting system under general periodic excitation. Nonlinear Dynamics, 34, 249–268.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (2003d). Optimal numerical control of single-well to cross-well chaos transition in mechanical systems. Chaos Solitons & Fractals, 15, 173–186.MathSciNetCrossRef Lenci, S., & Rega, G. (2003d). Optimal numerical control of single-well to cross-well chaos transition in mechanical systems. Chaos Solitons & Fractals, 15, 173–186.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (2004). A unified control framework of the nonregular dynamics of mechanical oscillators. Journal of Sound and Vibration, 278, 1051–1080.MathSciNetCrossRef Lenci, S., & Rega, G. (2004). A unified control framework of the nonregular dynamics of mechanical oscillators. Journal of Sound and Vibration, 278, 1051–1080.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (2005). Heteroclinic bifurcations and optimal control in the nonlinear rocking dynamics of generic and slender rigid blocks. International Journal of Bifurcation and Chaos, 15(6), 1901–1918.MathSciNetCrossRef Lenci, S., & Rega, G. (2005). Heteroclinic bifurcations and optimal control in the nonlinear rocking dynamics of generic and slender rigid blocks. International Journal of Bifurcation and Chaos, 15(6), 1901–1918.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (2006a). Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. Journal of Micromechanics and Microengineering, 16(2), 390–401.CrossRef Lenci, S., & Rega, G. (2006a). Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. Journal of Micromechanics and Microengineering, 16(2), 390–401.CrossRef
go back to reference Lenci, S., & Rega, G. (2006b). Optimal control and anti-control of the nonlinear dynamics of a rigid block. Philosophical Transactions of the Royal Society A, 364, 2353–2381.MathSciNetCrossRef Lenci, S., & Rega, G. (2006b). Optimal control and anti-control of the nonlinear dynamics of a rigid block. Philosophical Transactions of the Royal Society A, 364, 2353–2381.MathSciNetCrossRef
go back to reference Lenci, S., & Rega, G. (2008). Competing dynamic solutions in a parametrically excited pendulum: Attractor robustness and basin integrity. Journal of Computational and Nonlinear Dynamics, 3, 041010.CrossRef Lenci, S., & Rega, G. (2008). Competing dynamic solutions in a parametrically excited pendulum: Attractor robustness and basin integrity. Journal of Computational and Nonlinear Dynamics, 3, 041010.CrossRef
go back to reference Lenci, S., & Rega, G. (2011a). Forced harmonic vibration in a system with negative linear stiffness and linear viscous damping. In I. Kovacic & M. Brennan (eds.), The Duffing equation. non-linear oscillators and their behavior (pp. 219–276). Wiley. Lenci, S., & Rega, G. (2011a). Forced harmonic vibration in a system with negative linear stiffness and linear viscous damping. In I. Kovacic & M. Brennan (eds.), The Duffing equation. non-linear oscillators and their behavior (pp. 219–276). Wiley.
go back to reference Lenci, S., & Rega, G. (2011b). Load carrying capacity of systems within a global safety perspective. Part I. Robustness of stable equilibria under imperfections. International Journal of Non-Linear Mechanics, 46, 1232–1239.CrossRef Lenci, S., & Rega, G. (2011b). Load carrying capacity of systems within a global safety perspective. Part I. Robustness of stable equilibria under imperfections. International Journal of Non-Linear Mechanics, 46, 1232–1239.CrossRef
go back to reference Lenci, S., & Rega, G. (2011c). Experimental versus theoretical robustness of rotating solutions in a parametrically excited pendulum: A dynamical integrity perspective. Physica D: Nonlinear Phenomena, 240, 814–824.CrossRef Lenci, S., & Rega, G. (2011c). Experimental versus theoretical robustness of rotating solutions in a parametrically excited pendulum: A dynamical integrity perspective. Physica D: Nonlinear Phenomena, 240, 814–824.CrossRef
go back to reference Lenci, S., & Rega, G. (2011d). Load carrying capacity of systems within a global safety perspective. Part II. Attractor/basin integrity under dynamic excitations. International Journal of Non-Linear Mechanics, 46, 1240–1251.CrossRef Lenci, S., & Rega, G. (2011d). Load carrying capacity of systems within a global safety perspective. Part II. Attractor/basin integrity under dynamic excitations. International Journal of Non-Linear Mechanics, 46, 1240–1251.CrossRef
go back to reference Lenci, S., & Rega, G., (eds.) (2018). Global nonlinear dynamics for engineering design and system safety. CISM Courses and Lectures (No. 588). Springer. Lenci, S., & Rega, G., (eds.) (2018). Global nonlinear dynamics for engineering design and system safety. CISM Courses and Lectures (No. 588). Springer.
go back to reference Lenci, S., Brocchini, M., & Lorenzoni, C. (2012a). Experimental rotations of a pendulum on water waves. Journal of Computational and Nonlinear Dynamics, 7, 011007.CrossRef Lenci, S., Brocchini, M., & Lorenzoni, C. (2012a). Experimental rotations of a pendulum on water waves. Journal of Computational and Nonlinear Dynamics, 7, 011007.CrossRef
go back to reference Lenci, S., Orlando, D., Rega, G., & Gonçalves, P. B. (2012b). Controlling practical stability and safety of mechanical systems by exploiting chaos properties. Chaos, 22(4), 047502.MathSciNetCrossRef Lenci, S., Orlando, D., Rega, G., & Gonçalves, P. B. (2012b). Controlling practical stability and safety of mechanical systems by exploiting chaos properties. Chaos, 22(4), 047502.MathSciNetCrossRef
go back to reference Lenci, S., Orlando, D., Rega, G., & Gonçalves, P. B. (2012c). Controlling nonlinear dynamics of systems liable to unstable interactive buckling. Procedia IUTAM, 5, 108–123.CrossRef Lenci, S., Orlando, D., Rega, G., & Gonçalves, P. B. (2012c). Controlling nonlinear dynamics of systems liable to unstable interactive buckling. Procedia IUTAM, 5, 108–123.CrossRef
go back to reference Lenci, S., Rega, G., & Ruzziconi, L. (2013). Dynamical integrity as a conceptual and operating tool for interpreting/predicting experimental behavior. Philosophical Transactions of the Royal Society A, 371(1993), 20120423.CrossRef Lenci, S., Rega, G., & Ruzziconi, L. (2013). Dynamical integrity as a conceptual and operating tool for interpreting/predicting experimental behavior. Philosophical Transactions of the Royal Society A, 371(1993), 20120423.CrossRef
go back to reference Leszczynski, M., Perlikowski, P., & Brzeski, P. (2024). An unified approach for the calculation of different sample-based measures with single sampling method. Mathematics, 12(7), 987. Leszczynski, M., Perlikowski, P., & Brzeski, P. (2024). An unified approach for the calculation of different sample-based measures with single sampling method. Mathematics, 12(7), 987.
go back to reference Li, Z., Jiang, J., Hong, L., & Sun, J. Q. (2019). On the data-driven generalized cell mapping method. International Journal of Bifurcation and Chaos, 29(14), 1950204.MathSciNetCrossRef Li, Z., Jiang, J., Hong, L., & Sun, J. Q. (2019). On the data-driven generalized cell mapping method. International Journal of Bifurcation and Chaos, 29(14), 1950204.MathSciNetCrossRef
go back to reference Lindner, M., & Hellmann, F. (2019). Stochastic basins of attraction and generalized committor functions. Physical Review E, 100, 022124.CrossRef Lindner, M., & Hellmann, F. (2019). Stochastic basins of attraction and generalized committor functions. Physical Review E, 100, 022124.CrossRef
go back to reference Liu, X., & Wagg, D. J. (2019). Simultaneous normal form transformation and model-order reduction for systems of coupled nonlinear oscillators. Proceedings of the Royal Society A, 475, 20190042.MathSciNetCrossRef Liu, X., & Wagg, D. J. (2019). Simultaneous normal form transformation and model-order reduction for systems of coupled nonlinear oscillators. Proceedings of the Royal Society A, 475, 20190042.MathSciNetCrossRef
go back to reference Marszal, M., Jankowski, K., Perlikowski, P., & Kapitaniak, T. (2014). Bifurcations of oscillatory and rotational solutions of double pendulum with parametric vertical excitation. Mathematical Problems in Engineering, Article ID 892793. Marszal, M., Jankowski, K., Perlikowski, P., & Kapitaniak, T. (2014). Bifurcations of oscillatory and rotational solutions of double pendulum with parametric vertical excitation. Mathematical Problems in Engineering, Article ID 892793.
go back to reference Mazzilli, C. E., Gonçalves, P. B., & Franzini, G. R. (2022). Reduced-order modelling based on non-linear modes. International Journal of Mechanical Sciences, 214, 106915.CrossRef Mazzilli, C. E., Gonçalves, P. B., & Franzini, G. R. (2022). Reduced-order modelling based on non-linear modes. International Journal of Mechanical Sciences, 214, 106915.CrossRef
go back to reference Menck, P. J., Heitzig, J., Marwan, N., & Kurths, J. (2013). How basin stability complements the linear-stability paradigm. Nature Physics, 9(2), 89–92.CrossRef Menck, P. J., Heitzig, J., Marwan, N., & Kurths, J. (2013). How basin stability complements the linear-stability paradigm. Nature Physics, 9(2), 89–92.CrossRef
go back to reference Mezić, I. (2021). Koopman operator, geometry, and learning of dynamical systems. Notices of the American Mathematical Society, 68(7), 1087–1105. Mezić, I. (2021). Koopman operator, geometry, and learning of dynamical systems. Notices of the American Mathematical Society, 68(7), 1087–1105.
go back to reference Mignolet, M. P., Przekop, A., Rizzi, S. A., & Spottswood, S. M. (2013). A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures. Journal of Sound and Vibration, 332, 2437–2460.CrossRef Mignolet, M. P., Przekop, A., Rizzi, S. A., & Spottswood, S. M. (2013). A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures. Journal of Sound and Vibration, 332, 2437–2460.CrossRef
go back to reference Mingwu, L., & Haller, G. (2022). Nonlinear analysis of forced mechanical systems with internal resonance using spectral submanifolds, Part II: Bifurcation and quasi-periodic response. Nonlinear Dynamics, 110, 1045–1080.CrossRef Mingwu, L., & Haller, G. (2022). Nonlinear analysis of forced mechanical systems with internal resonance using spectral submanifolds, Part II: Bifurcation and quasi-periodic response. Nonlinear Dynamics, 110, 1045–1080.CrossRef
go back to reference Mingwu, L., Jain, S., & Haller, G. (2022). Nonlinear analysis of forced mechanical systems with internal resonance using spectral submanifolds, Part I: Periodic response and forced response curve. Nonlinear Dynamics, 110, 1005–1043.CrossRef Mingwu, L., Jain, S., & Haller, G. (2022). Nonlinear analysis of forced mechanical systems with internal resonance using spectral submanifolds, Part I: Periodic response and forced response curve. Nonlinear Dynamics, 110, 1005–1043.CrossRef
go back to reference Nandakumar, K., Wiercigroch, M., & Chatterjee, A. (2012). Optimum energy extraction from rotational motion in a parametrically excited pendulum. Mechanics Research Communications, 43, 7–14.CrossRef Nandakumar, K., Wiercigroch, M., & Chatterjee, A. (2012). Optimum energy extraction from rotational motion in a parametrically excited pendulum. Mechanics Research Communications, 43, 7–14.CrossRef
go back to reference Neild, S. A., Champneys, A. R., Wagg, D. J., Hill, T. L., & Cammarano, A. (2015). The use of normal forms for analysing nonlinear mechanical vibrations. Philosophical Transactions of the Royal Society A, 373, 20140404.MathSciNetCrossRef Neild, S. A., Champneys, A. R., Wagg, D. J., Hill, T. L., & Cammarano, A. (2015). The use of normal forms for analysing nonlinear mechanical vibrations. Philosophical Transactions of the Royal Society A, 373, 20140404.MathSciNetCrossRef
go back to reference Ochs, G. (2001). Random attractors: Robustness, numerics and chaotic dynamics. Ergodic theory, analysis, and efficient simulation of dynamical systems (pp. 1–30). Springer. Ochs, G. (2001). Random attractors: Robustness, numerics and chaotic dynamics. Ergodic theory, analysis, and efficient simulation of dynamical systems (pp. 1–30). Springer.
go back to reference Opreni, A., Vizzaccaro, A., Touzé, C., & Frangi, A. (2023). High order direct parametrisation of invariant manifolds for model order reduction of finite element structures: Application to generic forcing terms and parametrically excited systems. Nonlinear Dynamics, 111, 5401–5447.CrossRef Opreni, A., Vizzaccaro, A., Touzé, C., & Frangi, A. (2023). High order direct parametrisation of invariant manifolds for model order reduction of finite element structures: Application to generic forcing terms and parametrically excited systems. Nonlinear Dynamics, 111, 5401–5447.CrossRef
go back to reference Orlando, D., Gonçalves, P. B., Rega, G., & Lenci, S. (2011). Influence of modal coupling on the nonlinear dynamics of Augusti’s model. Journal of Computational and Nonlinear Dynamics, 6(4), 041014.CrossRef Orlando, D., Gonçalves, P. B., Rega, G., & Lenci, S. (2011). Influence of modal coupling on the nonlinear dynamics of Augusti’s model. Journal of Computational and Nonlinear Dynamics, 6(4), 041014.CrossRef
go back to reference Orlando, D., Gonçalves, P. B., Lenci, S., & Rega, G. (2016). Increasing practical safety of Von Mises truss via control of dynamic escape. Applied Mechanics and Materials, 849, 46–56.CrossRef Orlando, D., Gonçalves, P. B., Lenci, S., & Rega, G. (2016). Increasing practical safety of Von Mises truss via control of dynamic escape. Applied Mechanics and Materials, 849, 46–56.CrossRef
go back to reference Orlando, D., Gonçalves, P. B., Rega, G., & Lenci, S. (2019). Influence of transient escape and added load noise on the dynamic integrity of multistable systems. International Journal of Non-Linear Mechanics, 109, 140–154.CrossRef Orlando, D., Gonçalves, P. B., Rega, G., & Lenci, S. (2019). Influence of transient escape and added load noise on the dynamic integrity of multistable systems. International Journal of Non-Linear Mechanics, 109, 140–154.CrossRef
go back to reference Ott, E., Sauer, T., & Yorke, J. A. (1994). Coping with chaos. Wiley. Ott, E., Sauer, T., & Yorke, J. A. (1994). Coping with chaos. Wiley.
go back to reference Piccirillo, V., do Prado, T. G., Tusset, A. M., & Balthazar, J. M. (2020). Dynamic integrity analysis on a non-ideal oscillator. Mathematics in Engineering, Science and Aerospace, 11(3), 1–7. Piccirillo, V., do Prado, T. G., Tusset, A. M., & Balthazar, J. M. (2020). Dynamic integrity analysis on a non-ideal oscillator. Mathematics in Engineering, Science and Aerospace, 11(3), 1–7.
go back to reference Ponsioen, S., Jain, S., & Haller, G. (2020). Model reduction to spectral submanifolds and forced response calculation in high-dimensional mechanical systems. Journal of Sound and Vibration, 488, 115640.CrossRef Ponsioen, S., Jain, S., & Haller, G. (2020). Model reduction to spectral submanifolds and forced response calculation in high-dimensional mechanical systems. Journal of Sound and Vibration, 488, 115640.CrossRef
go back to reference Puy, A., Daza, A., Wagemakers, A., & Sanjuán, M. A. F. (2021). A test for fractal boundaries based on the basin entropy. Communications in Nonlinear Science and Numerical Simulation, 95, 105588.MathSciNetCrossRef Puy, A., Daza, A., Wagemakers, A., & Sanjuán, M. A. F. (2021). A test for fractal boundaries based on the basin entropy. Communications in Nonlinear Science and Numerical Simulation, 95, 105588.MathSciNetCrossRef
go back to reference Rega, G. (2020). Nonlinear dynamics in mechanics and engineering: 40 years of developments and Ali H. Nayfeh’s legacy. Nonlinear Dynamics, 99(1), 11–34.CrossRef Rega, G. (2020). Nonlinear dynamics in mechanics and engineering: 40 years of developments and Ali H. Nayfeh’s legacy. Nonlinear Dynamics, 99(1), 11–34.CrossRef
go back to reference Rega, G. (2022). Nonlinear dynamics in mechanics: State of the art and expected future developments. Journal of Computational and Nonlinear Dynamics, 17, 080802.CrossRef Rega, G. (2022). Nonlinear dynamics in mechanics: State of the art and expected future developments. Journal of Computational and Nonlinear Dynamics, 17, 080802.CrossRef
go back to reference Rega, G., & Lenci, S. (2005). Identifying, evaluating, and controlling dynamical integrity measures in nonlinear mechanical oscillators. Nonlinear Analysis: Real World Applications, 63, 902–914.CrossRef Rega, G., & Lenci, S. (2005). Identifying, evaluating, and controlling dynamical integrity measures in nonlinear mechanical oscillators. Nonlinear Analysis: Real World Applications, 63, 902–914.CrossRef
go back to reference Rega, G., & Lenci, S. (2008). Dynamical integrity and control of nonlinear mechanical oscillators. Journal of Vibration and Control, 14, 159–179.CrossRef Rega, G., & Lenci, S. (2008). Dynamical integrity and control of nonlinear mechanical oscillators. Journal of Vibration and Control, 14, 159–179.CrossRef
go back to reference Rega, G., & Lenci, S. (2015). A global dynamics perspective for system safety from macro- to nanomechanics: Analysis, control, and design engineering. Applied Mechanics Reviews, 67, 050802.CrossRef Rega, G., & Lenci, S. (2015). A global dynamics perspective for system safety from macro- to nanomechanics: Analysis, control, and design engineering. Applied Mechanics Reviews, 67, 050802.CrossRef
go back to reference Rega, G., & Settimi, V. (2013). Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy. Nonlinear Dynamics, 73(1–2), 101–123.MathSciNetCrossRef Rega, G., & Settimi, V. (2013). Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy. Nonlinear Dynamics, 73(1–2), 101–123.MathSciNetCrossRef
go back to reference Rega, G., & Settimi, V. (2021). Global dynamics perspective on macro- to nano-mechanics. Nonlinear Dynamics, 103(2), 1259–1303.CrossRef Rega, G., & Settimi, V. (2021). Global dynamics perspective on macro- to nano-mechanics. Nonlinear Dynamics, 103(2), 1259–1303.CrossRef
go back to reference Rega, G., Lenci, S., & Ruzziconi, L. (2018). Dynamical integrity: A novel paradigm for evaluating load carrying capacity. In S. Lenci & G. Rega (eds.), Global nonlinear dynamics for engineering design and system safety, CISM Courses and Lectures (No. 588, pp. 27–112). Springer. Rega, G., Lenci, S., & Ruzziconi, L. (2018). Dynamical integrity: A novel paradigm for evaluating load carrying capacity. In S. Lenci & G. Rega (eds.), Global nonlinear dynamics for engineering design and system safety, CISM Courses and Lectures (No. 588, pp. 27–112). Springer.
go back to reference Rega, G., Lenci, S., & Thompson, J. M. T. (2010). Controlling chaos: The OGY method, its use in mechanics, and an alternative unified framework for control of non-regular dynamics. In M. Thiel, J. Kurths, C. Romano, A. Moura, & G. Károlyi (Eds.), Nonlinear Dynamics and Chaos: Advances and Perspectives (pp. 211–269). Springer.CrossRef Rega, G., Lenci, S., & Thompson, J. M. T. (2010). Controlling chaos: The OGY method, its use in mechanics, and an alternative unified framework for control of non-regular dynamics. In M. Thiel, J. Kurths, C. Romano, A. Moura, & G. Károlyi (Eds.), Nonlinear Dynamics and Chaos: Advances and Perspectives (pp. 211–269). Springer.CrossRef
go back to reference Rega, G., Saetta, E., & Settimi, V. (2020). Modeling and nonlinear dynamics of thermomechanically coupled composite plates. International Journal of Mechanical Sciences, 187, 106106.CrossRef Rega, G., Saetta, E., & Settimi, V. (2020). Modeling and nonlinear dynamics of thermomechanically coupled composite plates. International Journal of Mechanical Sciences, 187, 106106.CrossRef
go back to reference Rodrigues, L., Silva, F. M. A., Gonçalves, P. B., & Del Prado, Z. J. G. N. (2014). Effects of modal coupling on the dynamics of parametrically and directly excited cylindrical shells. Thin Walled Structures, 81, 210–224.CrossRef Rodrigues, L., Silva, F. M. A., Gonçalves, P. B., & Del Prado, Z. J. G. N. (2014). Effects of modal coupling on the dynamics of parametrically and directly excited cylindrical shells. Thin Walled Structures, 81, 210–224.CrossRef
go back to reference Ruzziconi, L., Lenci, S., & Younis, M. I. (2013a). An imperfect microbeam under an axial load and electric excitation: Nonlinear phenomena and dynamical integrity. International Journal of Bifurcation and Chaos, 23(2), 1350026.MathSciNetCrossRef Ruzziconi, L., Lenci, S., & Younis, M. I. (2013a). An imperfect microbeam under an axial load and electric excitation: Nonlinear phenomena and dynamical integrity. International Journal of Bifurcation and Chaos, 23(2), 1350026.MathSciNetCrossRef
go back to reference Ruzziconi, L., Lenci, S., & Younis M. I. (2018). Interpreting and predicting experimental responses of micro and nano devices via dynamical integrity. In S. Lenci & G. Rega (eds.), Global nonlinear dynamics for engineering design and system safety, CISM Courses and Lectures (No. 588, pp. 113–166). Springer. Ruzziconi, L., Lenci, S., & Younis M. I. (2018). Interpreting and predicting experimental responses of micro and nano devices via dynamical integrity. In S. Lenci & G. Rega (eds.), Global nonlinear dynamics for engineering design and system safety, CISM Courses and Lectures (No. 588, pp. 113–166). Springer.
go back to reference Ruzziconi, L., Younis, M. I., & Lenci, S. (2013b). Multistability in an electrically actuated carbon nanotube: A dynamical integrity perspective. Nonlinear Dynamics, 74(3), 533–549.MathSciNetCrossRef Ruzziconi, L., Younis, M. I., & Lenci, S. (2013b). Multistability in an electrically actuated carbon nanotube: A dynamical integrity perspective. Nonlinear Dynamics, 74(3), 533–549.MathSciNetCrossRef
go back to reference Ruzziconi, L., Younis, M. I., & Lenci, S. (2013c). An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response. Meccanica, 48(7), 1761–1775.MathSciNetCrossRef Ruzziconi, L., Younis, M. I., & Lenci, S. (2013c). An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response. Meccanica, 48(7), 1761–1775.MathSciNetCrossRef
go back to reference Ruzziconi, L., Ramini, A., Younis, M. I., & Lenci, S. (2014). Theoretical prediction of experimental jump and pull-in dynamics in a MEMS sensor. Sensors, 14, 17089–17111.CrossRef Ruzziconi, L., Ramini, A., Younis, M. I., & Lenci, S. (2014). Theoretical prediction of experimental jump and pull-in dynamics in a MEMS sensor. Sensors, 14, 17089–17111.CrossRef
go back to reference Ruzziconi, L., Jaber, N., Kosoru, L., Bellaredj, M. L., & Younis, M. I. (2021). Internal resonance in the higher-order modes of a MEMS beam: Experiments and global analysis. Nonlinear Dynamics, 103, 2197–2226.CrossRef Ruzziconi, L., Jaber, N., Kosoru, L., Bellaredj, M. L., & Younis, M. I. (2021). Internal resonance in the higher-order modes of a MEMS beam: Experiments and global analysis. Nonlinear Dynamics, 103, 2197–2226.CrossRef
go back to reference Schultz, P., Menck, P. J., Heitzig, J., & Kurths, J. (2017). Potentials and limits to basin stability estimation. New Journal of Physics, 19, 023005.CrossRef Schultz, P., Menck, P. J., Heitzig, J., & Kurths, J. (2017). Potentials and limits to basin stability estimation. New Journal of Physics, 19, 023005.CrossRef
go back to reference Settimi, V., & Rega, G. (2016a). Exploiting global dynamics of a noncontact atomic force microcantilever to enhance its dynamical robustness via numerical control. International Journal of Bifurcation and Chaos, 26, 1630018.MathSciNetCrossRef Settimi, V., & Rega, G. (2016a). Exploiting global dynamics of a noncontact atomic force microcantilever to enhance its dynamical robustness via numerical control. International Journal of Bifurcation and Chaos, 26, 1630018.MathSciNetCrossRef
go back to reference Settimi, V., & Rega, G. (2016b). Global dynamics and integrity in noncontacting atomic force microscopy with feedback control. Nonlinear Dynamics, 86(4), 2261–2277.CrossRef Settimi, V., & Rega, G. (2016b). Global dynamics and integrity in noncontacting atomic force microscopy with feedback control. Nonlinear Dynamics, 86(4), 2261–2277.CrossRef
go back to reference Settimi, V., & Rega, G. (2016c). Influence of a locally-tailored external feedback control on the overall dynamics of a noncontact AFM model. International Journal of Non-Linear Mechanics, 80, 144–159.CrossRef Settimi, V., & Rega, G. (2016c). Influence of a locally-tailored external feedback control on the overall dynamics of a noncontact AFM model. International Journal of Non-Linear Mechanics, 80, 144–159.CrossRef
go back to reference Settimi, V., & Rega, G. (2018). Local versus global dynamics and control of an AFM model in a safety perspective. In S. Lenci & G. Rega (eds.), Global nonlinear dynamics for engineering design and system safety, CISM Courses and Lectures (No. 588, pp. 229–286). Springer. Settimi, V., & Rega, G. (2018). Local versus global dynamics and control of an AFM model in a safety perspective. In S. Lenci & G. Rega (eds.), Global nonlinear dynamics for engineering design and system safety, CISM Courses and Lectures (No. 588, pp. 229–286). Springer.
go back to reference Settimi, V., Gottlieb, O., & Rega, G. (2015). Asymptotic analysis of a noncontact AFM microcantilever sensor with external feedback control. Nonlinear Dynamics, 79(4), 2675–2698.MathSciNetCrossRef Settimi, V., Gottlieb, O., & Rega, G. (2015). Asymptotic analysis of a noncontact AFM microcantilever sensor with external feedback control. Nonlinear Dynamics, 79(4), 2675–2698.MathSciNetCrossRef
go back to reference Shaw, S. W., & Pierre, C. (1993). Normal modes for nonlinear vibratory systems. Journal of Sound and Vibration, 164(1), 85–124.MathSciNetCrossRef Shaw, S. W., & Pierre, C. (1993). Normal modes for nonlinear vibratory systems. Journal of Sound and Vibration, 164(1), 85–124.MathSciNetCrossRef
go back to reference Shen, Y., Béreux, N., Frangi, A., & Touzé, C. (2021a). Reduced order models for geometrically nonlinear structures: Assessment of implicit condensation in comparison with invariant manifold approach. European Journal of Mechanics A, 86, 104165.MathSciNetCrossRef Shen, Y., Béreux, N., Frangi, A., & Touzé, C. (2021a). Reduced order models for geometrically nonlinear structures: Assessment of implicit condensation in comparison with invariant manifold approach. European Journal of Mechanics A, 86, 104165.MathSciNetCrossRef
go back to reference Shen, Y., Vizzaccaro, A., Kesmia, N., Yu, T., Salles, L., Thomas, O., & Touzé, C. (2021b). Comparison of reduction methods for finite element geometrically nonlinear beam structures. Vibration, 4(1), 175–204.CrossRef Shen, Y., Vizzaccaro, A., Kesmia, N., Yu, T., Salles, L., Thomas, O., & Touzé, C. (2021b). Comparison of reduction methods for finite element geometrically nonlinear beam structures. Vibration, 4(1), 175–204.CrossRef
go back to reference Silva, F. M. A., & Gonçalves, P. B. (2015). The influence of uncertainties and random noise on the dynamic integrity analysis of a system liable to unstable buckling. Nonlinear Dynamics, 81, 707–724.CrossRef Silva, F. M. A., & Gonçalves, P. B. (2015). The influence of uncertainties and random noise on the dynamic integrity analysis of a system liable to unstable buckling. Nonlinear Dynamics, 81, 707–724.CrossRef
go back to reference Silva, F. M. A., Brazão, A. F., Gonçalves, P. B., & Del Prado, Z. J. G. N. (2015). Influence of physical and geometrical uncertainties in the parametric instability load of an axially excited cylindrical shell. Mathematical Problems in Engineering, Article ID 758959. Silva, F. M. A., Brazão, A. F., Gonçalves, P. B., & Del Prado, Z. J. G. N. (2015). Influence of physical and geometrical uncertainties in the parametric instability load of an axially excited cylindrical shell. Mathematical Problems in Engineering, Article ID 758959.
go back to reference Silva, F. M. A., Gonçalves, P. B., & Del Prado, Z. J. G. N. (2011). An alternative procedure for the non-linear vibration analysis of fluid-filled cylindrical shells. Nonlinear Dynamics, 66(3), 303–333.MathSciNetCrossRef Silva, F. M. A., Gonçalves, P. B., & Del Prado, Z. J. G. N. (2011). An alternative procedure for the non-linear vibration analysis of fluid-filled cylindrical shells. Nonlinear Dynamics, 66(3), 303–333.MathSciNetCrossRef
go back to reference Silva, F. M. A., Gonçalves, P. B., & Del Prado, Z. J. G. N. (2012). Influence of physical and geometrical system parameters uncertainties on the nonlinear oscillations of cylindrical shells. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 34, 622–632.CrossRef Silva, F. M. A., Gonçalves, P. B., & Del Prado, Z. J. G. N. (2012). Influence of physical and geometrical system parameters uncertainties on the nonlinear oscillations of cylindrical shells. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 34, 622–632.CrossRef
go back to reference Silva, F. M. A., Soares, R. M., Del Prado, Z. J. G. N., & Gonçalves, P. B. (2020). Intra-well and cross-well chaos in membranes and shells liable to buckling. Nonlinear Dynamics, 102, 877–906.CrossRef Silva, F. M. A., Soares, R. M., Del Prado, Z. J. G. N., & Gonçalves, P. B. (2020). Intra-well and cross-well chaos in membranes and shells liable to buckling. Nonlinear Dynamics, 102, 877–906.CrossRef
go back to reference Soliman, M. S., & Gonçalves, P. B. (2003). Chaotic behaviour resulting in transient and steady state instabilities of pressure-loaded shallow spherical shells. Journal of Sound and Vibration, 259, 497–512.CrossRef Soliman, M. S., & Gonçalves, P. B. (2003). Chaotic behaviour resulting in transient and steady state instabilities of pressure-loaded shallow spherical shells. Journal of Sound and Vibration, 259, 497–512.CrossRef
go back to reference Soliman, M. S., & Thompson, J. M. T. (1989). Integrity measures quantifying the erosion of smooth and fractal basins of attraction. Journal of Sound and Vibration, 135, 453–475.MathSciNetCrossRef Soliman, M. S., & Thompson, J. M. T. (1989). Integrity measures quantifying the erosion of smooth and fractal basins of attraction. Journal of Sound and Vibration, 135, 453–475.MathSciNetCrossRef
go back to reference Stender, M., & Hoffmann, N. (2022). STAB: An open-source software for computing the basin stability of multi-stable dynamical systems. Nonlinear Dynamics, 107(2), 1451–1468.CrossRef Stender, M., & Hoffmann, N. (2022). STAB: An open-source software for computing the basin stability of multi-stable dynamical systems. Nonlinear Dynamics, 107(2), 1451–1468.CrossRef
go back to reference Strogatz, S. H. (1994). Nonlinear dynamics and chaos. Addison-Wesley. Strogatz, S. H. (1994). Nonlinear dynamics and chaos. Addison-Wesley.
go back to reference Sun, J.-Q., Xiong, F.-R., Schütze, O., & Hernández, C. (2019). Cell mapping methods. Springer.CrossRef Sun, J.-Q., Xiong, F.-R., Schütze, O., & Hernández, C. (2019). Cell mapping methods. Springer.CrossRef
go back to reference Szemplinska-Stupnicka, W. (1995). The analytical predictive criteria for chaos and escape in nonlinear oscillators: A survey. Nonlinear Dynamics, 7(2), 129–147.MathSciNetCrossRef Szemplinska-Stupnicka, W. (1995). The analytical predictive criteria for chaos and escape in nonlinear oscillators: A survey. Nonlinear Dynamics, 7(2), 129–147.MathSciNetCrossRef
go back to reference Thompson, J. M. T. (1989). Chaotic phenomena triggering the escape from a potential well. Proceedings of the Royal Society of London A, 421, 195–225.MathSciNet Thompson, J. M. T. (1989). Chaotic phenomena triggering the escape from a potential well. Proceedings of the Royal Society of London A, 421, 195–225.MathSciNet
go back to reference Thompson, J. M. T. (1997). Designing against capsize in beam seas: Recent advances and new insights. Applied Mechanics Reviews, 50, 307–325.CrossRef Thompson, J. M. T. (1997). Designing against capsize in beam seas: Recent advances and new insights. Applied Mechanics Reviews, 50, 307–325.CrossRef
go back to reference Thompson, J. M. T., & Stewart, H. B. (1986). Nonlinear dynamics and chaos. Wiley. Thompson, J. M. T., & Stewart, H. B. (1986). Nonlinear dynamics and chaos. Wiley.
go back to reference Thompson, J. M. T., & Ueda, Y. (1989). Basin boundary metamorphoses in the canonical escape equation. Dynamics and Stability of Systems, 4(3–4), 285–294.MathSciNetCrossRef Thompson, J. M. T., & Ueda, Y. (1989). Basin boundary metamorphoses in the canonical escape equation. Dynamics and Stability of Systems, 4(3–4), 285–294.MathSciNetCrossRef
go back to reference Thompson, J. M. T., Rainey, R. C. T., & Soliman, M. S. (1990). Ship stability criteria based on chaotic transients from incursive fractals. Philosophical Transactions of the Royal Society of London A, 332(1624), 149–167.MathSciNetCrossRef Thompson, J. M. T., Rainey, R. C. T., & Soliman, M. S. (1990). Ship stability criteria based on chaotic transients from incursive fractals. Philosophical Transactions of the Royal Society of London A, 332(1624), 149–167.MathSciNetCrossRef
go back to reference Touzé, C. (2014). Normal form theory and nonlinear normal modes: Theoretical settings and applications. In G. Kerschen (ed.), Modal analysis of nonlinear mechanical systems, CISM Courses and Lectures (No. 555, pp. 75–160). Springer. Touzé, C. (2014). Normal form theory and nonlinear normal modes: Theoretical settings and applications. In G. Kerschen (ed.), Modal analysis of nonlinear mechanical systems, CISM Courses and Lectures (No. 555, pp. 75–160). Springer.
go back to reference Touzé, C., Vizzaccaro, A., & Thomas, O. (2021). Model order reduction methods for geometrically nonlinear structures: A review of nonlinear techniques. Nonlinear Dynamics, 105, 1141–1190.CrossRef Touzé, C., Vizzaccaro, A., & Thomas, O. (2021). Model order reduction methods for geometrically nonlinear structures: A review of nonlinear techniques. Nonlinear Dynamics, 105, 1141–1190.CrossRef
go back to reference Ulam, S. M. (1964). Problems in modern mathematics. John Wiley & Sons. Ulam, S. M. (1964). Problems in modern mathematics. John Wiley & Sons.
go back to reference Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. V., Pilipchuk, V. N., & Zevin, A. A. (1996). Normal modes and localization in nonlinear systems. Wiley.CrossRef Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. V., Pilipchuk, V. N., & Zevin, A. A. (1996). Normal modes and localization in nonlinear systems. Wiley.CrossRef
go back to reference Vizzaccaro, A., Salles, L., & Touzé, C. (2021a). Comparison of nonlinear mappings for reduced-order modelling of vibrating structures: Normal form theory and quadratic manifold method with modal derivatives. Nonlinear Dynamics, 103, 3335–3370.CrossRef Vizzaccaro, A., Salles, L., & Touzé, C. (2021a). Comparison of nonlinear mappings for reduced-order modelling of vibrating structures: Normal form theory and quadratic manifold method with modal derivatives. Nonlinear Dynamics, 103, 3335–3370.CrossRef
go back to reference Vizzaccaro, A., Shen, Y., Salles, L., Blahoš, J., & Touzé, C. (2021b). Direct computation of nonlinear mapping via normal form for reduced-order models of finite element nonlinear structures. Computer Methods in Applied Mechanics and Engineering, 384, 113957.MathSciNetCrossRef Vizzaccaro, A., Shen, Y., Salles, L., Blahoš, J., & Touzé, C. (2021b). Direct computation of nonlinear mapping via normal form for reduced-order models of finite element nonlinear structures. Computer Methods in Applied Mechanics and Engineering, 384, 113957.MathSciNetCrossRef
go back to reference Vizzaccaro, A., Opreni, A., Salles, L., Frangi, A., & Touzé, C. (2022). High order direct parametrisation of invariant manifolds for model order reduction of finite element structures: Application to large amplitude vibrations and uncovering of a folding point. Nonlinear Dynamics, 110, 525–571.CrossRef Vizzaccaro, A., Opreni, A., Salles, L., Frangi, A., & Touzé, C. (2022). High order direct parametrisation of invariant manifolds for model order reduction of finite element structures: Application to large amplitude vibrations and uncovering of a folding point. Nonlinear Dynamics, 110, 525–571.CrossRef
go back to reference Wiercigroch, M., & Rega, G. (2013). Introduction to NDATED. In M. Wiercigroch & G. Rega (Eds.), IUTAM Symposium on nonlinear dynamics for advanced technologies and engineering design (Vol. 32, pp. 5–8). IUTAM Bookseries, Springer. Wiercigroch, M., & Rega, G. (2013). Introduction to NDATED. In M. Wiercigroch & G. Rega (Eds.), IUTAM Symposium on nonlinear dynamics for advanced technologies and engineering design (Vol. 32, pp. 5–8). IUTAM Bookseries, Springer.
go back to reference Wiggins, S. (1990). Introduction to applied nonlinear dynamical systems and chaos. Springer.CrossRef Wiggins, S. (1990). Introduction to applied nonlinear dynamical systems and chaos. Springer.CrossRef
go back to reference Xiong, F. R., Qin, Z. C., Ding, Q., Hernández, C., Fernandez, J., Schütze, O., & Sun, J. Q. (2015). Parallel cell mapping method for global analysis of high-dimensional nonlinear dynamical systems. Journal of Applied Mechanics, 82(11), 111010.CrossRef Xiong, F. R., Qin, Z. C., Ding, Q., Hernández, C., Fernandez, J., Schütze, O., & Sun, J. Q. (2015). Parallel cell mapping method for global analysis of high-dimensional nonlinear dynamical systems. Journal of Applied Mechanics, 82(11), 111010.CrossRef
go back to reference Xiong, F. R., Han, Q., Hong, L., & Sun, J. Q. (2018). Global analysis of nonlinear dynamical systems. In S. Lenci & G. Rega (eds.), Global Nonlinear Dynamics for Engineering Design and System Safety, CISM Courses and Lectures (No. 588, pp. 287–318). Springer, Cham. Xiong, F. R., Han, Q., Hong, L., & Sun, J. Q. (2018). Global analysis of nonlinear dynamical systems. In S. Lenci & G. Rega (eds.), Global Nonlinear Dynamics for Engineering Design and System Safety, CISM Courses and Lectures (No. 588, pp. 287–318). Springer, Cham.
go back to reference Xiu, D. (2009). Fast numerical methods for stochastic computations: A review. Communications in Computational Physics, 5, 242–272.MathSciNet Xiu, D. (2009). Fast numerical methods for stochastic computations: A review. Communications in Computational Physics, 5, 242–272.MathSciNet
go back to reference Xu, W., He, Q., Fang, T., & Rong, H. (2003). Global analysis of stochastic bifurcation in Duffing system. International Journal of Bifurcation and Chaos, 13(10), 3115–3123.CrossRef Xu, W., He, Q., Fang, T., & Rong, H. (2003). Global analysis of stochastic bifurcation in Duffing system. International Journal of Bifurcation and Chaos, 13(10), 3115–3123.CrossRef
go back to reference Xu, W., He, Q., Fang, T., & Rong, H. (2004). Stochastic bifurcation in Duffing system subject to harmonic excitation and in presence of random noise. International Journal of Non-Linear Mechanics, 39(9), 1473–1479.MathSciNetCrossRef Xu, W., He, Q., Fang, T., & Rong, H. (2004). Stochastic bifurcation in Duffing system subject to harmonic excitation and in presence of random noise. International Journal of Non-Linear Mechanics, 39(9), 1473–1479.MathSciNetCrossRef
go back to reference Younis, M. I. (2011). MEMS linear and nonlinear statics and dynamics. Springer.CrossRef Younis, M. I. (2011). MEMS linear and nonlinear statics and dynamics. Springer.CrossRef
go back to reference Yue, X., Xu, Y., Xu, W., & Sun, J. Q. (2019a). Probabilistic response of dynamical systems based on the global attractor with the compatible cell mapping method. Physica A. Statistical Mechanics and Its Applications, 516, 509–519.MathSciNetCrossRef Yue, X., Xu, Y., Xu, W., & Sun, J. Q. (2019a). Probabilistic response of dynamical systems based on the global attractor with the compatible cell mapping method. Physica A. Statistical Mechanics and Its Applications, 516, 509–519.MathSciNetCrossRef
go back to reference Yue, X., Xu, Y., Xu, W., & Sun, J. Q. (2019b). Global invariant manifolds of dynamical systems with the compatible cell mapping method. International Journal of Bifurcation and Chaos, 29, 1950105.MathSciNetCrossRef Yue, X., Xu, Y., Xu, W., & Sun, J. Q. (2019b). Global invariant manifolds of dynamical systems with the compatible cell mapping method. International Journal of Bifurcation and Chaos, 29, 1950105.MathSciNetCrossRef
go back to reference Yue, X., Xiang, Y., Zhang, Y., & Xu, Y. (2021). Global analysis of stochastic bifurcation in shape memory alloy supporter with the extended composite cell coordinate system method. Chaos, 31, 013133.MathSciNetCrossRef Yue, X., Xiang, Y., Zhang, Y., & Xu, Y. (2021). Global analysis of stochastic bifurcation in shape memory alloy supporter with the extended composite cell coordinate system method. Chaos, 31, 013133.MathSciNetCrossRef
Metadata
Title
Global Nonlinear Dynamics: Challenges in the Analysis and Safety of Deterministic or Stochastic Systems
Author
Giuseppe Rega
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-56902-9_5

Premium Partners