Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 7/2020

13-06-2020 | Research Article-Mechanical Engineering

Global Nonlinear Dynamics of MEMS Arches Actuated by Fringing-Field Electrostatic Field

Authors: Mohammad Tausiff, Hassen M. Ouakad, Hussain Alqahtani

Published in: Arabian Journal for Science and Engineering | Issue 7/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrostatically actuated microbeams are a basic structural components mainly used in MEMS and possessing a wide range of applications such as sensors, actuators, resonators, filters, etc.... The pull-in instability and the smaller stroke length, are some of the major challenges in conventional parallel-plates-based electrostatics MEMS actuators, which somehow limit their respective application. Hence, a smart technique relying on the so-called electrical fringing field actuation offers a possibility of overcoming the above limitations and resulting in structural enhancement of MEMS devices. Along this line, the nonlinear dynamic behavior of a resonant MEMS arch microbeam actuated by fringing electric field with the ground electrodes placed at either side of it is presented in this work. The nonlinear equation of motion of the beam is solved using finite difference method to get the dynamic frequency responses of the microbeam. Linear resonant peaks are observed for the cases of low AC dynamic loading and high damping when the actuation frequency coincides with the devices’ various natural frequencies. The peaks of the resonance begin to shift away from the natural frequencies of the device demonstrating nonlinear phenomenon of softening and hardening with the increase in dynamic AC loading and decrease in the damping. Superharmonic frequencies at one-half or one-third of the natural frequencies and subharmonic frequencies at twice or thrice the natural frequencies are also triggered for various cases of nonlinear frequency response.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Krylov, S.; Seretensky, S.; Schreiber, D.: Proceedings of the the 21st IEEE International Conference on Micro Electro Mechanical Systems (Tuscan, AZ, USA, January 2008). Springer, Berlin (2008) Krylov, S.; Seretensky, S.; Schreiber, D.: Proceedings of the the 21st IEEE International Conference on Micro Electro Mechanical Systems (Tuscan, AZ, USA, January 2008). Springer, Berlin (2008)
2.
go back to reference Yin, Z.; Yisong, W.; Zhihong, L.; Yubo, H.; Dachao, L.: Snap-through and pull-in instabilities of an arch-shaped beam under an electrostatic loading. J. Microelectromech. Syst. 16, 684–693 (2007)CrossRef Yin, Z.; Yisong, W.; Zhihong, L.; Yubo, H.; Dachao, L.: Snap-through and pull-in instabilities of an arch-shaped beam under an electrostatic loading. J. Microelectromech. Syst. 16, 684–693 (2007)CrossRef
3.
go back to reference Krylov, S.; Ilic, B.R.; Schreiber, D.; Seretensky, S.; Craighead, H.: The pull-in behavior of electrostatically actuated bistable microstructures. J. Micromech. Microeng. 18, 055026 (2008)CrossRef Krylov, S.; Ilic, B.R.; Schreiber, D.; Seretensky, S.; Craighead, H.: The pull-in behavior of electrostatically actuated bistable microstructures. J. Micromech. Microeng. 18, 055026 (2008)CrossRef
4.
go back to reference Krylov, S.; Ilic, B.; Lulinsky, S.: Bistability of curved microbeams actuated by fringing electrostatic fields. Nonlinear Dyn. 66(3), 403–426 (2011)MathSciNetCrossRef Krylov, S.; Ilic, B.; Lulinsky, S.: Bistability of curved microbeams actuated by fringing electrostatic fields. Nonlinear Dyn. 66(3), 403–426 (2011)MathSciNetCrossRef
5.
go back to reference Lee, K.B.: Non-contact electrostatic microactuator using slit structures: theory and a preliminary test. J. Micromech. Microeng. 17, 2186–2196 (2007)CrossRef Lee, K.B.: Non-contact electrostatic microactuator using slit structures: theory and a preliminary test. J. Micromech. Microeng. 17, 2186–2196 (2007)CrossRef
6.
go back to reference Linzon, Y.; Ilic, B.; Lulinsky, S.; Krylov, S.: L: Efficient parametric excitation of silicon-on-insulator microcantilever beams by fringing electrostatic fields. J. Appl. Phys. 113, 163508–163511 (2013)CrossRef Linzon, Y.; Ilic, B.; Lulinsky, S.; Krylov, S.: L: Efficient parametric excitation of silicon-on-insulator microcantilever beams by fringing electrostatic fields. J. Appl. Phys. 113, 163508–163511 (2013)CrossRef
7.
go back to reference Ouakad, H.M.: Static response and natural frequencies of microbeams actuated by out-of-plane electrostatic fringing-fields. Int. J. Non-Linear Mech. 63, 39–48 (2014)CrossRef Ouakad, H.M.: Static response and natural frequencies of microbeams actuated by out-of-plane electrostatic fringing-fields. Int. J. Non-Linear Mech. 63, 39–48 (2014)CrossRef
8.
go back to reference Tausiff, M.; Ouakad, H.: Static, eigenvalue problem and bifurcation analysis of mems arches actuated by electrostatic fringing-fields. Microsyst. Technol. 22, 193–206 (2016)CrossRef Tausiff, M.; Ouakad, H.: Static, eigenvalue problem and bifurcation analysis of mems arches actuated by electrostatic fringing-fields. Microsyst. Technol. 22, 193–206 (2016)CrossRef
9.
go back to reference Kambali, P.N.; Pandey, A.K.: Nonlinear response of a microbeam under combined direct and fringing field excitation. ASME J. Comput. Nonlinear Dyn. 10, 10–16 (2015) Kambali, P.N.; Pandey, A.K.: Nonlinear response of a microbeam under combined direct and fringing field excitation. ASME J. Comput. Nonlinear Dyn. 10, 10–16 (2015)
10.
go back to reference Younis, M.; Abdel-Rahman, E.; Nayfeh, A.H.: A reduced-order model for electrically actuated microbeam-based mems. J. Microelectromech. Syst. 12, 672–680 (2003)CrossRef Younis, M.; Abdel-Rahman, E.; Nayfeh, A.H.: A reduced-order model for electrically actuated microbeam-based mems. J. Microelectromech. Syst. 12, 672–680 (2003)CrossRef
11.
go back to reference Ouakad, H.M.; Younis, M.I.: The dynamic behavior of mems arch resonators actuated electrically. Int. J. Non-Linear Mech. 45, 704–713 (2010)CrossRef Ouakad, H.M.; Younis, M.I.: The dynamic behavior of mems arch resonators actuated electrically. Int. J. Non-Linear Mech. 45, 704–713 (2010)CrossRef
12.
go back to reference Liu, S.; Davidson, A.; Lin, Q.: Simulation studies on nonlinear dynamics and chaos in a mems cantilever control system. J. Micromech. Microeng. 14, 1064–73 (2004)CrossRef Liu, S.; Davidson, A.; Lin, Q.: Simulation studies on nonlinear dynamics and chaos in a mems cantilever control system. J. Micromech. Microeng. 14, 1064–73 (2004)CrossRef
13.
go back to reference Zhang, W.; Tabata, O.; Tsuchiya, T.; Meng, G.: Noise-induced chaos in the electrostatically actuated mems resonators. Phys. Lett. A 375, 2903–2910 (2011)CrossRef Zhang, W.; Tabata, O.; Tsuchiya, T.; Meng, G.: Noise-induced chaos in the electrostatically actuated mems resonators. Phys. Lett. A 375, 2903–2910 (2011)CrossRef
14.
go back to reference Lenci, S.; Rega, G.: Control of pull-in dynamics in a nonlinear thermoelasticelectrically actuated microbeam. J. Micromech. Microeng 16, 390–401 (2006)CrossRef Lenci, S.; Rega, G.: Control of pull-in dynamics in a nonlinear thermoelasticelectrically actuated microbeam. J. Micromech. Microeng 16, 390–401 (2006)CrossRef
15.
go back to reference Siewe, M.S.; Hegazy, U.H.: Homoclinic bifurcation and chaos control in mems resonators. Appl. Math. Model. 35, 5533–5552 (2011)MathSciNetCrossRef Siewe, M.S.; Hegazy, U.H.: Homoclinic bifurcation and chaos control in mems resonators. Appl. Math. Model. 35, 5533–5552 (2011)MathSciNetCrossRef
16.
go back to reference Haghighi, H.S.; Markazi, A.H.: Chaos prediction and control in mems resonators. Commun. Nonlinear Sci. Numer. Simul. 15, 3091–3099 (2010)CrossRef Haghighi, H.S.; Markazi, A.H.: Chaos prediction and control in mems resonators. Commun. Nonlinear Sci. Numer. Simul. 15, 3091–3099 (2010)CrossRef
17.
go back to reference Aghababa, M.P.: Chaos in a fractional-order micro–electro-mechanical resonator and its suppression. Chin. Phys. B 21, 100505 (2012)CrossRef Aghababa, M.P.: Chaos in a fractional-order micro–electro-mechanical resonator and its suppression. Chin. Phys. B 21, 100505 (2012)CrossRef
18.
go back to reference Fargas-Marques, A.; Casals-Terre, J.; Shkel, A.: Resonant pull-in condition in parallel-plate electrostatic actuators. J. Microelectromech. Syst. 16, 1044–53 (2007)CrossRef Fargas-Marques, A.; Casals-Terre, J.; Shkel, A.: Resonant pull-in condition in parallel-plate electrostatic actuators. J. Microelectromech. Syst. 16, 1044–53 (2007)CrossRef
19.
go back to reference Ashhab, M.; Salapaka, M.V.; Dahleh, M.; Mezic, I.: Melnikov-based dynamical analysis of microcantilevers in scanning probe microscopy. J. Nonlinear Dyn. 20, 197–220 (1999)MathSciNetCrossRef Ashhab, M.; Salapaka, M.V.; Dahleh, M.; Mezic, I.: Melnikov-based dynamical analysis of microcantilevers in scanning probe microscopy. J. Nonlinear Dyn. 20, 197–220 (1999)MathSciNetCrossRef
20.
go back to reference Basso, M.; Giarre, L.; Dahleh, M.; Mezic, I.: Complex dynamics in a harmonically excited Lennard–Jones oscillator: microcantilever-sample interaction in scanning probe microscopes’. J. Dyn. Syst. Meas. Control 122, 240–245 (2000)CrossRef Basso, M.; Giarre, L.; Dahleh, M.; Mezic, I.: Complex dynamics in a harmonically excited Lennard–Jones oscillator: microcantilever-sample interaction in scanning probe microscopes’. J. Dyn. Syst. Meas. Control 122, 240–245 (2000)CrossRef
21.
go back to reference Alsaleem, F.M.; Younis, M.I.; Ouakad, H.M.: On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. J. Micromech. Microeng. 19, 14 (2009)CrossRef Alsaleem, F.M.; Younis, M.I.; Ouakad, H.M.: On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. J. Micromech. Microeng. 19, 14 (2009)CrossRef
22.
go back to reference Nayfeh, A.; Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)CrossRef Nayfeh, A.; Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)CrossRef
23.
go back to reference Nayfeh, A.H.; Younis, M.I.; Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in mems resonators. J. Nonlinear Dyn. 48, 153–63 (2007)CrossRef Nayfeh, A.H.; Younis, M.I.; Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in mems resonators. J. Nonlinear Dyn. 48, 153–63 (2007)CrossRef
24.
go back to reference Nayfeh, A.H.; Younis, M.I.: Dynamics of mems resonators under superharmonic and subharmonic excitations. J. Micromech Microeng. 15, 1840–7 (2005)CrossRef Nayfeh, A.H.; Younis, M.I.: Dynamics of mems resonators under superharmonic and subharmonic excitations. J. Micromech Microeng. 15, 1840–7 (2005)CrossRef
25.
go back to reference Alsaleem, F.M.; Younis, M.I.; Ruzziconi, L.: An experimental and theoretical investigation of dynamic pull-in in mems resonators actuated electrostatically. J. Microelectromech. Syst. 19, 794–806 (2010)CrossRef Alsaleem, F.M.; Younis, M.I.; Ruzziconi, L.: An experimental and theoretical investigation of dynamic pull-in in mems resonators actuated electrostatically. J. Microelectromech. Syst. 19, 794–806 (2010)CrossRef
26.
go back to reference Zur, K.; Arefi, M.; Kim, J.; Reddy, J.: Free vibration and buckling analyses of magneto–electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Compos. Part B 182, 107601 (2020)CrossRef Zur, K.; Arefi, M.; Kim, J.; Reddy, J.: Free vibration and buckling analyses of magneto–electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Compos. Part B 182, 107601 (2020)CrossRef
28.
go back to reference Barretta, R.: A higher-order eringen model for Bernoulli–Euler nanobeams. Arch. Appl. Mech. 86, 483–495 (2016)CrossRef Barretta, R.: A higher-order eringen model for Bernoulli–Euler nanobeams. Arch. Appl. Mech. 86, 483–495 (2016)CrossRef
29.
go back to reference Xu, L.; Yang, Q.: Multi-field coupled dynamics for a micro beam. Mech. Based Design Struct. Mach. 43, 57–73 (2015)CrossRef Xu, L.; Yang, Q.: Multi-field coupled dynamics for a micro beam. Mech. Based Design Struct. Mach. 43, 57–73 (2015)CrossRef
30.
go back to reference Nayfeh, A.H.: Nonlinear Interactions. Wiley, New York (2000)MATH Nayfeh, A.H.: Nonlinear Interactions. Wiley, New York (2000)MATH
31.
go back to reference Younis, M.I.; Ouakad, H.M.; Alsaleem, F.M.; Miles, R.; Cui, W.: Nonlinear dynamics of mems arches under harmonic electrostatic actuation. J. Microelectromech. Syst. 19, 647–656 (2010)CrossRef Younis, M.I.; Ouakad, H.M.; Alsaleem, F.M.; Miles, R.; Cui, W.: Nonlinear dynamics of mems arches under harmonic electrostatic actuation. J. Microelectromech. Syst. 19, 647–656 (2010)CrossRef
32.
go back to reference Nayfeh, A.H.; Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)CrossRef Nayfeh, A.H.; Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)CrossRef
33.
go back to reference Younis, M.I.; Nayfeh, E.M.A.-R.A.H.: Reduced-order model for electrically actuated microbeam-based mems. J. Microelectromech. Syst. 12, 5 (2003)CrossRef Younis, M.I.; Nayfeh, E.M.A.-R.A.H.: Reduced-order model for electrically actuated microbeam-based mems. J. Microelectromech. Syst. 12, 5 (2003)CrossRef
34.
go back to reference Younis, M.I.; Abdel-Rahman, E.M.; Nayfeh, A.H.: Global dynamics of mems resonators under superharmonic excitation. In: Proceedings. 2004 International Conference on MEMS NANO and Smart Systems, ICMENS 2004, pp. 694–699 (2004) Younis, M.I.; Abdel-Rahman, E.M.; Nayfeh, A.H.: Global dynamics of mems resonators under superharmonic excitation. In: Proceedings. 2004 International Conference on MEMS NANO and Smart Systems, ICMENS 2004, pp. 694–699 (2004)
35.
go back to reference Bellman, R.E.; Kashef, B.G.; Casti, J.: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys. 10, 40–52 (1972)MathSciNetCrossRef Bellman, R.E.; Kashef, B.G.; Casti, J.: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys. 10, 40–52 (1972)MathSciNetCrossRef
36.
go back to reference Civan, F.; Sliepcevich, C.M.: Differential quadrature for multidimensional problems. J Math. Anal. 101, 423–443 (1984)MathSciNetCrossRef Civan, F.; Sliepcevich, C.M.: Differential quadrature for multidimensional problems. J Math. Anal. 101, 423–443 (1984)MathSciNetCrossRef
Metadata
Title
Global Nonlinear Dynamics of MEMS Arches Actuated by Fringing-Field Electrostatic Field
Authors
Mohammad Tausiff
Hassen M. Ouakad
Hussain Alqahtani
Publication date
13-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 7/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04588-2

Other articles of this Issue 7/2020

Arabian Journal for Science and Engineering 7/2020 Go to the issue

Premium Partners