Skip to main content
Top
Published in: Theoretical and Computational Fluid Dynamics 5/2019

10-08-2019 | Original Article

Global thermoacoustic oscillations in a thermally driven pulse tube

Authors: Saravana Kumar, Arnab Samanta

Published in: Theoretical and Computational Fluid Dynamics | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We obtain linearized, BiGlobal thermoacoustic solutions in a pulse tube driven via an imposed mean temperature gradient. Here, the pulse tube is treated as a key unit of a thermoacoustic heat engine, in which the conversion of thermal energy to useful acoustic fluctuations occurs. A primary goal of this work is to understand the hydrodynamic efficiency of the energy conversion process and how it depends upon some of the important operating parameters, including the geometry of the device which in the limit of long length-to-diameter ratio approaches the so-called narrow tube approximation. As this limit is frequently imposed in the wave propagation analyses of thermoacoustic devices, it is critical to investigate the physical connections of such a model to more realistic finite-length pulse tube configurations, which we do here. The mean flow is quiescent with an analytic mean temperature profile that still models the necessary physical details of the hot heat exchanger and regenerator. The computed thermoacoustic oscillations are found to be globally stable, approaching neutral stability conditions at the narrow tube limit. In finite-length tubes, three distinct types of modes are identified and analyzed. Here, within a linear framework, radial modes do appear to act as key enablers for longitudinal modes to be the primary carriers of acoustic energy from the pulse tube section, while the identified boundary modes, essentially numerical constructs, are ignored in the analysis. Further, a disturbance energy-based efficiency metric is constructed that provides mechanistic understanding of some of the key parameters in pulse tube operation. For finite-length tubes, it shows oscillations of the first asymmetric mode to be the most efficient, while the axisymmetric perturbations dominate for longer tubes that eventually lead to the idealized plane wave propagation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference von Helmholtz, H.: in Verhandlungen des naturhistorisch-medizinischen Vereins zu Heidelberg, vol. III, p. 6 (1863) von Helmholtz, H.: in Verhandlungen des naturhistorisch-medizinischen Vereins zu Heidelberg, vol. III, p. 6 (1863)
2.
go back to reference Kirchhoff, G.: Über den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung. Pogg. Ann. 134, 177 (1868) Kirchhoff, G.: Über den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung. Pogg. Ann. 134, 177 (1868)
3.
go back to reference Rayleigh, L.: The Theory of Sound, vol. II. Dover, New York (1945)MATH Rayleigh, L.: The Theory of Sound, vol. II. Dover, New York (1945)MATH
5.
go back to reference Rott, N.: Damped and thermally driven acoustic oscillations in wide and narrow tubes. Z. Angew. Math. Phys. 20, 230 (1969)CrossRefMATH Rott, N.: Damped and thermally driven acoustic oscillations in wide and narrow tubes. Z. Angew. Math. Phys. 20, 230 (1969)CrossRefMATH
6.
go back to reference Rott, N.: Thermally driven acoustic oscillations. Part II. Stability limit for Helium. Z. Angew. Math. Phys. 24, 54 (1973)CrossRef Rott, N.: Thermally driven acoustic oscillations. Part II. Stability limit for Helium. Z. Angew. Math. Phys. 24, 54 (1973)CrossRef
8.
go back to reference Sugimoto, N., Yoshida, M.: Marginal condition for the onset of thermoacoustic oscillations of a gas in a tube. Phys. Fluids 19(7), 074101 (2007)CrossRefMATH Sugimoto, N., Yoshida, M.: Marginal condition for the onset of thermoacoustic oscillations of a gas in a tube. Phys. Fluids 19(7), 074101 (2007)CrossRefMATH
9.
10.
go back to reference Sugimoto, N.: Thermoacoustic-wave equations for gas in a channel and a tube subject to temperature gradient. J. Fluid Mech. 658, 89 (2010)MathSciNetCrossRefMATH Sugimoto, N.: Thermoacoustic-wave equations for gas in a channel and a tube subject to temperature gradient. J. Fluid Mech. 658, 89 (2010)MathSciNetCrossRefMATH
11.
go back to reference Hyodo, H., Sugimoto, N.: Stability analysis for the onset of thermoacoustic oscillations in a gas-filled looped tube. J. Fluid Mech. 741, 585 (2014)MathSciNetCrossRefMATH Hyodo, H., Sugimoto, N.: Stability analysis for the onset of thermoacoustic oscillations in a gas-filled looped tube. J. Fluid Mech. 741, 585 (2014)MathSciNetCrossRefMATH
12.
go back to reference Swift, G.W.: Thermoacoustic engines. J. Acoust. Soc. Am. 84(4), 1145 (1988)CrossRef Swift, G.W.: Thermoacoustic engines. J. Acoust. Soc. Am. 84(4), 1145 (1988)CrossRef
13.
go back to reference Tijdeman, H.: On the propagation of sound waves in cylindrical tubes. J. Sound Vib. 39(1), 1 (1975)CrossRefMATH Tijdeman, H.: On the propagation of sound waves in cylindrical tubes. J. Sound Vib. 39(1), 1 (1975)CrossRefMATH
14.
15.
go back to reference Ward, W.C., Swift, G.W.: Design environment for low-amplitude thermoacoustic engines. J. Acoust. Soc. Am. 95(6), 3671 (1994)CrossRef Ward, W.C., Swift, G.W.: Design environment for low-amplitude thermoacoustic engines. J. Acoust. Soc. Am. 95(6), 3671 (1994)CrossRef
16.
go back to reference Swift, G.W., Ward, W.C.: Simple harmonic analysis of regenerators. J. Thermophys. Heat Transf. 10(4), 652 (1996)CrossRef Swift, G.W., Ward, W.C.: Simple harmonic analysis of regenerators. J. Thermophys. Heat Transf. 10(4), 652 (1996)CrossRef
17.
go back to reference Ueda, Y., Kato, C.: Stability analysis of thermally induced spontaneous gas oscillations in straight and looped tubes. J. Acoust. Soc. Am. 124(2), 851 (2008)CrossRef Ueda, Y., Kato, C.: Stability analysis of thermally induced spontaneous gas oscillations in straight and looped tubes. J. Acoust. Soc. Am. 124(2), 851 (2008)CrossRef
18.
go back to reference Shimizu, D., Sugimoto, N.: Numerical study of thermoacoustic Taconis oscillations. J. Appl. Phys. 107(3), 034910 (2010)CrossRef Shimizu, D., Sugimoto, N.: Numerical study of thermoacoustic Taconis oscillations. J. Appl. Phys. 107(3), 034910 (2010)CrossRef
19.
go back to reference Scalo, C., Lin, J., Lele, S.K., Hesselink, L.: Towards full-scale numerical simulations of a traveling-wave thermoacoustic Stirling heat engine. In: AIAA Paper, no. 2013–3208 (2013) Scalo, C., Lin, J., Lele, S.K., Hesselink, L.: Towards full-scale numerical simulations of a traveling-wave thermoacoustic Stirling heat engine. In: AIAA Paper, no. 2013–3208 (2013)
20.
go back to reference Scalo, C., Lele, S.K., Hesselink, L.: Linear and nonlinear modelling of a theoretical travelling-wave thermoacoustic heat engine. J. Fluid Mech. 766, 368 (2015)MathSciNetCrossRef Scalo, C., Lele, S.K., Hesselink, L.: Linear and nonlinear modelling of a theoretical travelling-wave thermoacoustic heat engine. J. Fluid Mech. 766, 368 (2015)MathSciNetCrossRef
21.
go back to reference Lin, J., Scalo, C., Hesselink, L.: High-fidelity simulation of a standing-wave thermoacoustic-piezoelectric engine. J. Fluid Mech. 808, 19 (2016)MathSciNetCrossRefMATH Lin, J., Scalo, C., Hesselink, L.: High-fidelity simulation of a standing-wave thermoacoustic-piezoelectric engine. J. Fluid Mech. 808, 19 (2016)MathSciNetCrossRefMATH
22.
go back to reference Watanabe, M., Prosperetti, A., Yuan, H.: A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part I. Model and linear theory. J. Acoust. Soc. Am. 102(6), 3484 (1997)CrossRef Watanabe, M., Prosperetti, A., Yuan, H.: A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part I. Model and linear theory. J. Acoust. Soc. Am. 102(6), 3484 (1997)CrossRef
23.
go back to reference de Jong, J.A., Wijnant, Y.H., Wilcox, D., de Boer, A.: Modeling of thermoacoustic systems using the nonlinear frequency domain method. J. Acoust. Soc. Am. 138(3), 1241 (2015)CrossRef de Jong, J.A., Wijnant, Y.H., Wilcox, D., de Boer, A.: Modeling of thermoacoustic systems using the nonlinear frequency domain method. J. Acoust. Soc. Am. 138(3), 1241 (2015)CrossRef
24.
go back to reference Tijani, M.E.H., Spoelstra, S.: A high performance thermoacoustic engine. J. Appl. Phys. 110(9), 093519 (2011)CrossRef Tijani, M.E.H., Spoelstra, S.: A high performance thermoacoustic engine. J. Appl. Phys. 110(9), 093519 (2011)CrossRef
25.
go back to reference Nichols, J.W., Lele, S.K.: Global modes and transient response of a cold supersonic jet. J. Fluid Mech. 669, 225 (2011)CrossRefMATH Nichols, J.W., Lele, S.K.: Global modes and transient response of a cold supersonic jet. J. Fluid Mech. 669, 225 (2011)CrossRefMATH
26.
go back to reference Nichols, J.W., Lele, S.K.: Global mode analysis of turbulent high-speed jets. In: Moin, P., Larsson, J., Mansour, N. (eds.) Annual Research Briefs. Center for Turbulence Research, Stanford University, Stanford (2010) Nichols, J.W., Lele, S.K.: Global mode analysis of turbulent high-speed jets. In: Moin, P., Larsson, J., Mansour, N. (eds.) Annual Research Briefs. Center for Turbulence Research, Stanford University, Stanford (2010)
27.
go back to reference Garnaud, X., Lesshafft, L., Schmid, P.J., Huerre, P.: Modal and transient dynamics of jet flows. Phys. Fluids 25(4), 044103 (2013)CrossRefMATH Garnaud, X., Lesshafft, L., Schmid, P.J., Huerre, P.: Modal and transient dynamics of jet flows. Phys. Fluids 25(4), 044103 (2013)CrossRefMATH
28.
go back to reference Lycklama À Nijeholt, J.L., Tijani, M., Spoelstra, S.: Simulation of a traveling-wave thermoacoustic engine using computational fluid dynamics. J. Acoust. Soc. Am. 118(4), 2265 (2005)CrossRef Lycklama À Nijeholt, J.L., Tijani, M., Spoelstra, S.: Simulation of a traveling-wave thermoacoustic engine using computational fluid dynamics. J. Acoust. Soc. Am. 118(4), 2265 (2005)CrossRef
29.
go back to reference Backhaus, S., Swift, G.W.: A thermoacoustic Stirling heat engine. Nature 399, 335 (1999)CrossRef Backhaus, S., Swift, G.W.: A thermoacoustic Stirling heat engine. Nature 399, 335 (1999)CrossRef
30.
go back to reference Sugimoto, N.: Nonlinear theory for thermoacoustic waves in a narrow channel and pore subject to a temperature gradient. J. Fluid Mech. 797, 765 (2016)MathSciNetCrossRefMATH Sugimoto, N.: Nonlinear theory for thermoacoustic waves in a narrow channel and pore subject to a temperature gradient. J. Fluid Mech. 797, 765 (2016)MathSciNetCrossRefMATH
31.
go back to reference Hilsenrath, J.: Tables of Thermodynamic and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, Oxygen, and Steam. Pergamon Press, Oxford (1960) Hilsenrath, J.: Tables of Thermodynamic and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, Oxygen, and Steam. Pergamon Press, Oxford (1960)
32.
go back to reference Sinha, A., Gudmundsson, K., Xia, H., Colonius, T.: Parabolized stability analysis of jets from serrated nozzles. J. Fluid Mech. 789, 36 (2016)MathSciNetCrossRef Sinha, A., Gudmundsson, K., Xia, H., Colonius, T.: Parabolized stability analysis of jets from serrated nozzles. J. Fluid Mech. 789, 36 (2016)MathSciNetCrossRef
34.
go back to reference Khorrami, M.R., Malik, M.R., Ash, R.L.: Application of spectral collocation techniques to the stability of swirling flows. J. Comput. Phys. 81, 206 (1989)CrossRefMATH Khorrami, M.R., Malik, M.R., Ash, R.L.: Application of spectral collocation techniques to the stability of swirling flows. J. Comput. Phys. 81, 206 (1989)CrossRefMATH
35.
go back to reference Theofilis, V., Hein, S., Dallmann, U.: On the origins of unsteadiness and three-dimensionality in a laminar separation bubble. Proc. R. Soc. A. 358(1777), 3229 (2000)CrossRefMATH Theofilis, V., Hein, S., Dallmann, U.: On the origins of unsteadiness and three-dimensionality in a laminar separation bubble. Proc. R. Soc. A. 358(1777), 3229 (2000)CrossRefMATH
36.
go back to reference Theofilis, V.: Advances in global linear instability of nonparallel and three-dimensional flows. Prog. Aero Sci. 39(4), 249 (2003)CrossRef Theofilis, V.: Advances in global linear instability of nonparallel and three-dimensional flows. Prog. Aero Sci. 39(4), 249 (2003)CrossRef
37.
go back to reference Kumar, S., Samanta, A.: The role of global thermoacoustic modes in the energy exchange of a finite-length thermally-driven duct. In: Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference, Delft, AIAA Paper, no. 2019–2593 (2019) Kumar, S., Samanta, A.: The role of global thermoacoustic modes in the energy exchange of a finite-length thermally-driven duct. In: Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference, Delft, AIAA Paper, no. 2019–2593 (2019)
38.
go back to reference Jafari-Varzaneh, H.A., Hosseini, S.M.: A new map for the Chebyshev pseudospectral solution of differential equations with large gradients. Numer. Algorithms 69(1), 95 (2015)MathSciNetCrossRefMATH Jafari-Varzaneh, H.A., Hosseini, S.M.: A new map for the Chebyshev pseudospectral solution of differential equations with large gradients. Numer. Algorithms 69(1), 95 (2015)MathSciNetCrossRefMATH
39.
go back to reference Malik, M.R., Zang, T.A., Hussaini, M.Y.: A spectral collocation method for the Navier–Stokes equations. J. Comput. Phys. 61, 64 (1985)MathSciNetCrossRefMATH Malik, M.R., Zang, T.A., Hussaini, M.Y.: A spectral collocation method for the Navier–Stokes equations. J. Comput. Phys. 61, 64 (1985)MathSciNetCrossRefMATH
40.
go back to reference Oberleithner, K., Sieber, M., Nayeri, C.N., Paschereit, C.O., Petz, C., Hege, H.C., Noack, B.R., Wygnanski, I.: Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383 (2011)CrossRefMATH Oberleithner, K., Sieber, M., Nayeri, C.N., Paschereit, C.O., Petz, C., Hege, H.C., Noack, B.R., Wygnanski, I.: Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383 (2011)CrossRefMATH
41.
42.
go back to reference Chu, B.T.: On the energy transfer to small disturbances in fluid flow (Part I). Acta Mech. 1(3), 215 (1965)CrossRef Chu, B.T.: On the energy transfer to small disturbances in fluid flow (Part I). Acta Mech. 1(3), 215 (1965)CrossRef
43.
go back to reference Yadav, N.K., Samanta, A.: The stability of compressible swirling pipe flows with density stratification. J. Fluid Mech. 823, 689 (2017)MathSciNetCrossRefMATH Yadav, N.K., Samanta, A.: The stability of compressible swirling pipe flows with density stratification. J. Fluid Mech. 823, 689 (2017)MathSciNetCrossRefMATH
44.
go back to reference Lele, S.K.: Flows with density variations and compressibility: similarities and differences. In: Fulachier, L., Lumley, J.L., Anselmet, F. (eds.) IUTAM Symposium on Variable Density Low-Speed Turbulent Flows, pp. 279–301. Kluwer Academic Publishers, Berlin (1997)CrossRef Lele, S.K.: Flows with density variations and compressibility: similarities and differences. In: Fulachier, L., Lumley, J.L., Anselmet, F. (eds.) IUTAM Symposium on Variable Density Low-Speed Turbulent Flows, pp. 279–301. Kluwer Academic Publishers, Berlin (1997)CrossRef
45.
go back to reference Balasubramanian, K., Sujith, R.I.: Thermoacoustic instability in a Rijke tube: non-normality and nonlinearity. Phys. Fluids 20(4), 044103 (2008)CrossRefMATH Balasubramanian, K., Sujith, R.I.: Thermoacoustic instability in a Rijke tube: non-normality and nonlinearity. Phys. Fluids 20(4), 044103 (2008)CrossRefMATH
46.
go back to reference Mann III, J.A., Tichy, J., Romano, A.J.: Instantaneous and time-averaged energy transfer in acoustic fields. J. Acoust. Soc. Am. 82(1), 17 (1987)MathSciNetCrossRef Mann III, J.A., Tichy, J., Romano, A.J.: Instantaneous and time-averaged energy transfer in acoustic fields. J. Acoust. Soc. Am. 82(1), 17 (1987)MathSciNetCrossRef
47.
go back to reference Majdalani, J., Kumar, T.R., Akiki, M.: Biglobal instability of the compressible Taylor-Culick solution in cylindrical rockets. In: AIAA Paper, no. 2016–4792 (2016) Majdalani, J., Kumar, T.R., Akiki, M.: Biglobal instability of the compressible Taylor-Culick solution in cylindrical rockets. In: AIAA Paper, no. 2016–4792 (2016)
Metadata
Title
Global thermoacoustic oscillations in a thermally driven pulse tube
Authors
Saravana Kumar
Arnab Samanta
Publication date
10-08-2019
Publisher
Springer Berlin Heidelberg
Published in
Theoretical and Computational Fluid Dynamics / Issue 5/2019
Print ISSN: 0935-4964
Electronic ISSN: 1432-2250
DOI
https://doi.org/10.1007/s00162-019-00501-2

Other articles of this Issue 5/2019

Theoretical and Computational Fluid Dynamics 5/2019 Go to the issue

Premium Partners