Skip to main content
Top
Published in: Cellulose 12/2019

27-06-2019 | Original Research

Glucose-based carbon materials as supports for the efficient catalytic transformation of cellulose directly to ethylene glycol

Authors: Lucília Sousa Ribeiro, Natalia Rey-Raap, José L. Figueiredo, José J. Melo Órfão, Manuel Fernando Ribeiro Pereira

Published in: Cellulose | Issue 12/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Glucose-derived carbon materials were synthesized and used to support Ru–W bimetallic catalysts that provide the one-pot conversion of cellulose to ethylene glycol (EG). The catalysts prepared on the carbonized glucose (after hydrothermal synthesis and carbonization) were the most efficient for the production of EG, with yields around 30% after 5 h. Moreover, the addition of oxygenated groups to the carbon material surface enhanced the yield of EG (48% after 3 h), possibly as a result of the preferential hydrolysis of cellulose to glucose and suppressing of glucose isomerization to fructose. Furthermore, the catalytic system showed excellent stability after repeated uses, at least up to three cycles. As a result, the synthesized catalysts seem to be promising alternatives in order to produce EG directly from cellulose by a more economical (supports derived from biomass), faster (one-pot reaction) and easier (combined catalyst synthesis) process.

Graphic abstract

Glucose-derived carbon materials were presented as efficient and cheaper alternatives to carbon nanotubes as supports of Ru–W catalysts for the production of EG directly from cellulose.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:7965–8216CrossRef Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:7965–8216CrossRef
go back to reference Cao Y, Wang J, Kang M, Zhu Y (2014) Efficient synthesis of ethylene glycol from cellulose over Ni–WO3/SBA-15 catalysts. J Mol Catal A: Chem 381:46–53CrossRef Cao Y, Wang J, Kang M, Zhu Y (2014) Efficient synthesis of ethylene glycol from cellulose over Ni–WO3/SBA-15 catalysts. J Mol Catal A: Chem 381:46–53CrossRef
go back to reference Cao Y, Wang J, Kang M, Zhu L (2016) Catalytic conversion of glucose and cellobiose into ethylene glycol over various tunsgten-based catalysts. J Fuel Chem Technol 44:845–852CrossRef Cao Y, Wang J, Kang M, Zhu L (2016) Catalytic conversion of glucose and cellobiose into ethylene glycol over various tunsgten-based catalysts. J Fuel Chem Technol 44:845–852CrossRef
go back to reference Chai J, Zhu S, Cen Y, Guo J, Wang J, Fan W (2017) Effect of tungsten surface density of WO3–ZrO2 on its catalytic performance in hydrogenolysis of cellulose to ethylene glycol. RSC Adv 7:8567–8574CrossRef Chai J, Zhu S, Cen Y, Guo J, Wang J, Fan W (2017) Effect of tungsten surface density of WO3–ZrO2 on its catalytic performance in hydrogenolysis of cellulose to ethylene glycol. RSC Adv 7:8567–8574CrossRef
go back to reference Dabbawala AA, Mishra DK, Hwang J (2016) Selective hydrogenation of d-glucose using amine functionalized nanoporous polymer supported Ru nanoparticles based catalyst. Catal Today 265:163–173CrossRef Dabbawala AA, Mishra DK, Hwang J (2016) Selective hydrogenation of d-glucose using amine functionalized nanoporous polymer supported Ru nanoparticles based catalyst. Catal Today 265:163–173CrossRef
go back to reference Deng W, Tan X, Fang W, Zhang Q, Wang Y (2009) Conversion of cellulose into sorbitol over carbon nanotube-supported ruthenium catalyst. Catal Lett 133:167CrossRef Deng W, Tan X, Fang W, Zhang Q, Wang Y (2009) Conversion of cellulose into sorbitol over carbon nanotube-supported ruthenium catalyst. Catal Lett 133:167CrossRef
go back to reference Deng W, Zhang H, Xue L, Zhang Q, Wang Y (2015) Selective activation of the C–O bonds in lignocellulosic biomass for the efficient production of chemicals. Chin J Catal 36:1440–1460CrossRef Deng W, Zhang H, Xue L, Zhang Q, Wang Y (2015) Selective activation of the C–O bonds in lignocellulosic biomass for the efficient production of chemicals. Chin J Catal 36:1440–1460CrossRef
go back to reference Falco C, Marco-Lozar JP, Salinas-Torres D, Morallón E, Cazorla-Amorós D, Titirici MM, Lozano-Castelló D (2013) Tailoring the porosity of chemically activated hydrothermal carbons: influence of the precursor and hydrothermal carbonization temperature. Carbon 62:346–355CrossRef Falco C, Marco-Lozar JP, Salinas-Torres D, Morallón E, Cazorla-Amorós D, Titirici MM, Lozano-Castelló D (2013) Tailoring the porosity of chemically activated hydrothermal carbons: influence of the precursor and hydrothermal carbonization temperature. Carbon 62:346–355CrossRef
go back to reference Guo X, Dong H, Li B, Dong L, Mu X, Chen X (2017) Influence of the functional groups of multiwalled carbon nanotubes on performance of Ru catalysts in sorbitol hydrogenolysis to glycols. J Mol Catal A: Chem 426:79–87CrossRef Guo X, Dong H, Li B, Dong L, Mu X, Chen X (2017) Influence of the functional groups of multiwalled carbon nanotubes on performance of Ru catalysts in sorbitol hydrogenolysis to glycols. J Mol Catal A: Chem 426:79–87CrossRef
go back to reference Han JW, Lee H (2012) Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. Catal Commun 19:115–118CrossRef Han JW, Lee H (2012) Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. Catal Commun 19:115–118CrossRef
go back to reference Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805CrossRef Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805CrossRef
go back to reference Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem Int Ed 47:8510–8513CrossRef Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem Int Ed 47:8510–8513CrossRef
go back to reference Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Shu Y, Stottlemyer AL, Chen JG (2009) Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts. Catal Today 147:77–85CrossRef Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Shu Y, Stottlemyer AL, Chen JG (2009) Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts. Catal Today 147:77–85CrossRef
go back to reference Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378CrossRef Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378CrossRef
go back to reference Kobayashi H, Ohta H, Fukuoka A (2012) Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis. Catal Sci Technol 2:869–883CrossRef Kobayashi H, Ohta H, Fukuoka A (2012) Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis. Catal Sci Technol 2:869–883CrossRef
go back to reference Kruse A, Dahmen N (2018) Hydrothermal biomass conversion: quo vadis? J Supercrit Fluids 134:114CrossRef Kruse A, Dahmen N (2018) Hydrothermal biomass conversion: quo vadis? J Supercrit Fluids 134:114CrossRef
go back to reference Kumar M, Oyedun AO, Kumar A (2018) A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sustain Energy Rev 81:1742–1770CrossRef Kumar M, Oyedun AO, Kumar A (2018) A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sustain Energy Rev 81:1742–1770CrossRef
go back to reference Li C, Zheng M, Wang A, Zhang T (2012) One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. Energy Environ Sci 5:6383–6390CrossRef Li C, Zheng M, Wang A, Zhang T (2012) One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. Energy Environ Sci 5:6383–6390CrossRef
go back to reference Li N, Zheng Y, Wei L, Teng H, Zhou J (2017) Metal nanoparticles supported on WO3 nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol. Green Chem 19:682–691CrossRef Li N, Zheng Y, Wei L, Teng H, Zhou J (2017) Metal nanoparticles supported on WO3 nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol. Green Chem 19:682–691CrossRef
go back to reference Li X, Guo T, Xia Q, Liu X, Wang Y (2018) One-pot catalytic transformation of lignocellulosic biomass into alkylcyclohexanes and polyols. ACS Sustain Chem Eng 6:4390–4399CrossRef Li X, Guo T, Xia Q, Liu X, Wang Y (2018) One-pot catalytic transformation of lignocellulosic biomass into alkylcyclohexanes and polyols. ACS Sustain Chem Eng 6:4390–4399CrossRef
go back to reference Liu Y, Luo C, Liu H (2012) Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew Chem 124:3303–3307CrossRef Liu Y, Luo C, Liu H (2012) Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew Chem 124:3303–3307CrossRef
go back to reference Liu S, Tamura M, Nakagawa Y, Tomishige K (2014) One-pot conversion of cellulose into n-Hexane over the Ir–ReOx/SiO2 catalyst combined with HZSM-5. ACS Sustainable Chem Eng 2:1819–1827CrossRef Liu S, Tamura M, Nakagawa Y, Tomishige K (2014) One-pot conversion of cellulose into n-Hexane over the Ir–ReOx/SiO2 catalyst combined with HZSM-5. ACS Sustainable Chem Eng 2:1819–1827CrossRef
go back to reference Liu H, Qin L, Wang X, Du C, Sun D, Meng X (2016) Hydrolytic hydro-conversion of cellulose to ethylene glycol over bimetallic CNTs-supported NiWB amorphous alloy catalyst. Catal Commun 77:47–51CrossRef Liu H, Qin L, Wang X, Du C, Sun D, Meng X (2016) Hydrolytic hydro-conversion of cellulose to ethylene glycol over bimetallic CNTs-supported NiWB amorphous alloy catalyst. Catal Commun 77:47–51CrossRef
go back to reference Liu Y, Liu Y, Zhang Y (2019) The synergistic effects of Ru and WOx for aqueous-phase hydrogenation of glucose to lower diols. Appl Catal B 242:100–108CrossRef Liu Y, Liu Y, Zhang Y (2019) The synergistic effects of Ru and WOx for aqueous-phase hydrogenation of glucose to lower diols. Appl Catal B 242:100–108CrossRef
go back to reference Ma J, Shi S, Jia X, Xia F, Ma H, Gao J, Xu J (2019) Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. J Energy Chem 36:74–86CrossRef Ma J, Shi S, Jia X, Xia F, Ma H, Gao J, Xu J (2019) Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. J Energy Chem 36:74–86CrossRef
go back to reference Manaenkov OV, Mann JJ, Kislitza OV, Losovyj Y, Stein BD, Morgan DG et al (2016) Ru-containing magnetically recoverable catalysts: a sustainable pathway from cellulose to ethylene and propylene glycols. ACS Appl Mater Interfaces 8:21285–21293CrossRefPubMed Manaenkov OV, Mann JJ, Kislitza OV, Losovyj Y, Stein BD, Morgan DG et al (2016) Ru-containing magnetically recoverable catalysts: a sustainable pathway from cellulose to ethylene and propylene glycols. ACS Appl Mater Interfaces 8:21285–21293CrossRefPubMed
go back to reference Ogo S, Okuno Y, Sekine H, Manabe S, Yabe T, Onda A, Sekine Y (2017) Low-temperature direct catalytic hydrothermal conversion of biomass cellulose to light hydrocarbons over Pt/Zeolite catalysts. ChemistrySelect 2:6201–6205CrossRef Ogo S, Okuno Y, Sekine H, Manabe S, Yabe T, Onda A, Sekine Y (2017) Low-temperature direct catalytic hydrothermal conversion of biomass cellulose to light hydrocarbons over Pt/Zeolite catalysts. ChemistrySelect 2:6201–6205CrossRef
go back to reference Ribeiro LS, Órfão JJM, Pereira MFR (2015) Enhanced direct production of sorbitol by cellulose ball-milling. Green Chem 17:2973–2980CrossRef Ribeiro LS, Órfão JJM, Pereira MFR (2015) Enhanced direct production of sorbitol by cellulose ball-milling. Green Chem 17:2973–2980CrossRef
go back to reference Ribeiro LS, Delgado JJ, De Melo Órfão JJ, Pereira MFR (2017) Direct conversion of cellulose to sorbitol over ruthenium catalysts: influence of the support. Catal Today 279:244–251CrossRef Ribeiro LS, Delgado JJ, De Melo Órfão JJ, Pereira MFR (2017) Direct conversion of cellulose to sorbitol over ruthenium catalysts: influence of the support. Catal Today 279:244–251CrossRef
go back to reference Ribeiro LS, Órfão J, Órfão JJM, Pereira MFR (2018a) Hydrolytic hydrogenation of cellulose to ethylene glycol over CNT supported Ru–W bimetallic catalysts. Cellulose 25:2259–2272CrossRef Ribeiro LS, Órfão J, Órfão JJM, Pereira MFR (2018a) Hydrolytic hydrogenation of cellulose to ethylene glycol over CNT supported Ru–W bimetallic catalysts. Cellulose 25:2259–2272CrossRef
go back to reference Ribeiro LS, Órfão JJM, Pereira MFR (2018b) Insights into the effect of the catalytic functions on selective production of ethylene glycol from lignocellulosic biomass over carbon supported Ru and W catalysts. Bioresour Technol 263:402–409CrossRefPubMed Ribeiro LS, Órfão JJM, Pereira MFR (2018b) Insights into the effect of the catalytic functions on selective production of ethylene glycol from lignocellulosic biomass over carbon supported Ru and W catalysts. Bioresour Technol 263:402–409CrossRefPubMed
go back to reference Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51:2564–2601CrossRef Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51:2564–2601CrossRef
go back to reference Sevilla M, Yu L, Zhao L, Ania CO, Titiricic MM (2014) Surface modification of CNTs with n-doped carbon: an effective way of enhancing their performance in supercapacitors. ACS Sustainable Chem Eng 2:1049–1055CrossRef Sevilla M, Yu L, Zhao L, Ania CO, Titiricic MM (2014) Surface modification of CNTs with n-doped carbon: an effective way of enhancing their performance in supercapacitors. ACS Sustainable Chem Eng 2:1049–1055CrossRef
go back to reference Tai Z, Zhang J, Wang A, Pang J, Zheng M, Zhang T (2013) Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of raney Ni and Tungstic acid. ChemSusChem 6:652–658CrossRefPubMed Tai Z, Zhang J, Wang A, Pang J, Zheng M, Zhang T (2013) Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of raney Ni and Tungstic acid. ChemSusChem 6:652–658CrossRefPubMed
go back to reference Van De Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang L, Van Tendeloo G, Jacobs PA, Sels BF (2010) Selective bifunctional catalytic conversion of cellulose over reshaped ni particles at the tip of carbon nanofibers. ChemSusChem 3:698–701CrossRefPubMed Van De Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang L, Van Tendeloo G, Jacobs PA, Sels BF (2010) Selective bifunctional catalytic conversion of cellulose over reshaped ni particles at the tip of carbon nanofibers. ChemSusChem 3:698–701CrossRefPubMed
go back to reference Van De Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3:82–94CrossRef Van De Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3:82–94CrossRef
go back to reference Wang A, Zhang T (2013) One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc Chem Res 46:1377–1386CrossRefPubMed Wang A, Zhang T (2013) One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc Chem Res 46:1377–1386CrossRefPubMed
go back to reference Wang H, Zhu L, Peng S, Peng F, Yu H, Yang J (2012) High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst. Renew Energy 37:192–196CrossRef Wang H, Zhu L, Peng S, Peng F, Yu H, Yang J (2012) High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst. Renew Energy 37:192–196CrossRef
go back to reference Wataniyakul P, Boonnoun P, Quitain AT, Sasaki M, Kida T, Laosiripojana N, Shotipruk A (2018) Preparation of hydrothermal carbon as catalyst support for conversion of biomass to 5-hydroxymethylfurfural. Catal Commun 104:41–47CrossRef Wataniyakul P, Boonnoun P, Quitain AT, Sasaki M, Kida T, Laosiripojana N, Shotipruk A (2018) Preparation of hydrothermal carbon as catalyst support for conversion of biomass to 5-hydroxymethylfurfural. Catal Commun 104:41–47CrossRef
go back to reference Wiesfeld JJ, Peršolja P, Rollier FA, Elemans-Mehring AM, Hensen EJM (2019) Cellulose conversion to ethylene glycol by tungsten oxide-based catalysts. Mol Catal 473:110400CrossRef Wiesfeld JJ, Peršolja P, Rollier FA, Elemans-Mehring AM, Hensen EJM (2019) Cellulose conversion to ethylene glycol by tungsten oxide-based catalysts. Mol Catal 473:110400CrossRef
go back to reference Xi J, Ding D, Shao Y, Liu X, Lu G, Wang Y (2014) Production of ethylene glycol and its monoether derivative from cellulose. ACS Sustain Chem Eng 2:2355–2362CrossRef Xi J, Ding D, Shao Y, Liu X, Lu G, Wang Y (2014) Production of ethylene glycol and its monoether derivative from cellulose. ACS Sustain Chem Eng 2:2355–2362CrossRef
go back to reference Xiang M, Liu J, Fu W, Tang T, Wu D (2017) Improved activity for cellulose conversion to levulinic acid through hierarchization of ETS-10 zeolite. ACS Sustain Chem Eng 5:5800–5809CrossRef Xiang M, Liu J, Fu W, Tang T, Wu D (2017) Improved activity for cellulose conversion to levulinic acid through hierarchization of ETS-10 zeolite. ACS Sustain Chem Eng 5:5800–5809CrossRef
go back to reference Xiao Z, Jin S, Pang M, Liang C (2013) Conversion of highly concentrated cellulose to 1,2-propanediol and ethylene glycol over highly efficient CuCr catalysts. Green Chem 15:891–895CrossRef Xiao Z, Jin S, Pang M, Liang C (2013) Conversion of highly concentrated cellulose to 1,2-propanediol and ethylene glycol over highly efficient CuCr catalysts. Green Chem 15:891–895CrossRef
go back to reference Xiao Z, Fan Y, Cheng Y, Zhang Q, Ge Q, Sha R, Ji J, Mao J (2018a) Metal particles supported on SiO2–OH nanosphere: new insight into interactions with metals for cellulose conversion to ethylene glycol. Fuel 215:406–416CrossRef Xiao Z, Fan Y, Cheng Y, Zhang Q, Ge Q, Sha R, Ji J, Mao J (2018a) Metal particles supported on SiO2–OH nanosphere: new insight into interactions with metals for cellulose conversion to ethylene glycol. Fuel 215:406–416CrossRef
go back to reference Xiao Z, Zhang Q, Chen T, Wang X, Fan Y, Ge Q et al (2018b) Heterobimetallic catalysis for lignocellulose to ethylene glycol on nickel–tungsten catalysts: influenced by hydroxy groups. Fuel 230:332–343CrossRef Xiao Z, Zhang Q, Chen T, Wang X, Fan Y, Ge Q et al (2018b) Heterobimetallic catalysis for lignocellulose to ethylene glycol on nickel–tungsten catalysts: influenced by hydroxy groups. Fuel 230:332–343CrossRef
go back to reference Xu S, Yan X, Bu Q, Xia H (2017) Catalytic conversion of cellulose into polyols using carbon-nanotube-supported monometallic Pd and bimetallic Pd–Fe catalysts. Cellulose 24:2403–2413CrossRef Xu S, Yan X, Bu Q, Xia H (2017) Catalytic conversion of cellulose into polyols using carbon-nanotube-supported monometallic Pd and bimetallic Pd–Fe catalysts. Cellulose 24:2403–2413CrossRef
go back to reference Yabushita M, Kobayashi H, Fukuoka A (2014) Catalytic transformation of cellulose into platform chemicals. Appl Catal B 145:1–9CrossRef Yabushita M, Kobayashi H, Fukuoka A (2014) Catalytic transformation of cellulose into platform chemicals. Appl Catal B 145:1–9CrossRef
go back to reference Yang L, Yan X, Wang Q, Wang Q, Xia H (2015) One-pot catalytic conversion of cellulose into polyols with Pt/CNTs catalysts. Carbohydr Res 404:87–92CrossRefPubMed Yang L, Yan X, Wang Q, Wang Q, Xia H (2015) One-pot catalytic conversion of cellulose into polyols with Pt/CNTs catalysts. Carbohydr Res 404:87–92CrossRefPubMed
go back to reference Yang Y, Zhang W, Yang F, Brown DE, Ren Y, Lee S, Zeng D, Gao Q, Zhang X (2016) Versatile nickel–tungsten bimetallics/carbon nanofiber catalysts for direct conversion of cellulose to ethylene glycol. Green Chem 18:3949–3955CrossRef Yang Y, Zhang W, Yang F, Brown DE, Ren Y, Lee S, Zeng D, Gao Q, Zhang X (2016) Versatile nickel–tungsten bimetallics/carbon nanofiber catalysts for direct conversion of cellulose to ethylene glycol. Green Chem 18:3949–3955CrossRef
go back to reference Zada B, Chen M, Chen C, Yan L, Xu Q, Li W, Guo Q, Fu Y (2017) Recent advances in catalytic production of sugar alcohols and their applications. Sci China Chem 60:853–869CrossRef Zada B, Chen M, Chen C, Yan L, Xu Q, Li W, Guo Q, Fu Y (2017) Recent advances in catalytic production of sugar alcohols and their applications. Sci China Chem 60:853–869CrossRef
go back to reference Zhang Y, Wang A, Zhang T (2010) A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol. Chem Commun 46:862–864CrossRef Zhang Y, Wang A, Zhang T (2010) A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol. Chem Commun 46:862–864CrossRef
go back to reference Zhang K, Wu S, Yang H, Yin H, Li G (2016) Catalytic conversion of cellulose for efficient ethylene glycol production and insights into the reaction pathways. RSC Adv 6:77499–77506CrossRef Zhang K, Wu S, Yang H, Yin H, Li G (2016) Catalytic conversion of cellulose for efficient ethylene glycol production and insights into the reaction pathways. RSC Adv 6:77499–77506CrossRef
go back to reference Zhang B, Hao J, Sha Y, Zhou H, Yang K, Song Y, Ban Y, He R, Liu Q (2018) Utilization of lignite derivatives to construct Zr-based catalysts for the conversion of biomass-derived ethyl levulinate. Fuel 217:122–130CrossRef Zhang B, Hao J, Sha Y, Zhou H, Yang K, Song Y, Ban Y, He R, Liu Q (2018) Utilization of lignite derivatives to construct Zr-based catalysts for the conversion of biomass-derived ethyl levulinate. Fuel 217:122–130CrossRef
go back to reference Zhao G, Zheng M, Wang A, Zhang T (2010) Catalytic conversion of cellulose to ethylene glycol over tungsten phosphide catalysts. Chin J Catal 31:928–932CrossRef Zhao G, Zheng M, Wang A, Zhang T (2010) Catalytic conversion of cellulose to ethylene glycol over tungsten phosphide catalysts. Chin J Catal 31:928–932CrossRef
go back to reference Zhao X, Wang J, Chen C, Huang Y, Wang A, Zhang T (2014) Graphene oxide for cellulose hydrolysis: how it works as a highly active catalyst? Chem Commun 50:3439–3442CrossRef Zhao X, Wang J, Chen C, Huang Y, Wang A, Zhang T (2014) Graphene oxide for cellulose hydrolysis: how it works as a highly active catalyst? Chem Commun 50:3439–3442CrossRef
go back to reference Zheng MY, Wang AQ, Ji N, Pang JF, Wang XD, Zhang T (2010) Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol. ChemSusChem 3:63–66CrossRefPubMed Zheng MY, Wang AQ, Ji N, Pang JF, Wang XD, Zhang T (2010) Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol. ChemSusChem 3:63–66CrossRefPubMed
go back to reference Zheng M, Pang J, Sun R, Wang A, Zhang T (2017) Selectivity control for cellulose to diols: dancing on eggs. ACS Catalysis 7:1939–1954CrossRef Zheng M, Pang J, Sun R, Wang A, Zhang T (2017) Selectivity control for cellulose to diols: dancing on eggs. ACS Catalysis 7:1939–1954CrossRef
Metadata
Title
Glucose-based carbon materials as supports for the efficient catalytic transformation of cellulose directly to ethylene glycol
Authors
Lucília Sousa Ribeiro
Natalia Rey-Raap
José L. Figueiredo
José J. Melo Órfão
Manuel Fernando Ribeiro Pereira
Publication date
27-06-2019
Publisher
Springer Netherlands
Published in
Cellulose / Issue 12/2019
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02583-x

Other articles of this Issue 12/2019

Cellulose 12/2019 Go to the issue