Skip to main content
Top
Published in: International Journal of Plastics Technology 1/2015

01-06-2015 | Research Article

Glutaraldehyde cross-linked sulphonated poly styrene ethylene butylene poly styrene membranes for methanol fuel cells

Authors: Perumal Bhavani, Dharmalingam Sangeetha

Published in: International Journal of Plastics Technology | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

New, cheap proton conducting crosslinked membranes based on sulphonated poly styrene ethylene butylene poly styrene (SPSEBS) and glutaraldehyde (2 to 10 %) were synthesized as substitute for costly Nafion117 membrane. Glutaraldehyde was used as the cross-linking agent in order to improve dimensional stability. The proton conductivity of the crosslinked membranes was in the order of 10−2S/cm at 25 °C. Proton exchange membrane fuel cell achieved the maximum power density of 68 and 58 mW/cm2, at a current density of 200 mA/ cm2for cross-linked membranes with glutaraldehyde content 2 and 10 % respectively. The methanol permeability of the cross-linked membrane (in the range of 16.22 to 11. 89 × 10−7 cm2/s) was much lower than that of Nafion 117 (35.2 × 10−7 cm2/s). Direct methanol fuel cell (2 M concentration at 25 °C) consisting of cross-linked membrane was assembled and systematically examined. The crosslinked membranes containing 2 and 10 % glutaraldehyde showed maximum power density of 56 and 67.5 mW/cm2, respectively. The performance of cross-linked membranes in both the cells was several times higher than that of Nafion 117. Hence the cross-linked membrane is a viable substitute for Nafion 117 for fuel cells applications. In this study the formation of sulphonated PSEBS and cross-linked structure was ascertained through FTIR and X-ray diffraction spectra, scanning electron microscopy and thermal analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Steele BCH, Heinzel A (2001) Materials for fuel cell technologies. Nature 414:345–352CrossRef Steele BCH, Heinzel A (2001) Materials for fuel cell technologies. Nature 414:345–352CrossRef
2.
go back to reference Lafitte B, Karlsson LE, Jannasch P (2002) Sulfophenylation of polysulfones for proton—conducting fuel cell membranes. Maccromol Rapid Commun 23:896–900CrossRef Lafitte B, Karlsson LE, Jannasch P (2002) Sulfophenylation of polysulfones for proton—conducting fuel cell membranes. Maccromol Rapid Commun 23:896–900CrossRef
3.
go back to reference Wee JH (2006) Which type of fuel cell is more competitive for portable application: direct methanol fuel cells or direct boro hydride fuel cell. J Power Sources 161:1–10CrossRef Wee JH (2006) Which type of fuel cell is more competitive for portable application: direct methanol fuel cells or direct boro hydride fuel cell. J Power Sources 161:1–10CrossRef
4.
go back to reference Lee CH et al (2009) Surface-fluorinated proton-exchange membrane with high electrochemical durability for direct methanol fuel cells. ACS Appl Mater Interfaces 1(5):1113–21CrossRef Lee CH et al (2009) Surface-fluorinated proton-exchange membrane with high electrochemical durability for direct methanol fuel cells. ACS Appl Mater Interfaces 1(5):1113–21CrossRef
5.
go back to reference Kim DJ, Lee HJ, Nam SY (2013) Sulfonated poly (arylene ether sulfone) membranes blended with hydrophobic polymers for direct methanol fuel cell application. Int J Hydrogen Energy 39:17524–17532CrossRef Kim DJ, Lee HJ, Nam SY (2013) Sulfonated poly (arylene ether sulfone) membranes blended with hydrophobic polymers for direct methanol fuel cell application. Int J Hydrogen Energy 39:17524–17532CrossRef
6.
go back to reference Bhavani P, Sangeetha D (2012) Blend membranes for direct methanol and proton exchange membrane fuel cells. Chin J Polymer Sci 30(4):548–560CrossRef Bhavani P, Sangeetha D (2012) Blend membranes for direct methanol and proton exchange membrane fuel cells. Chin J Polymer Sci 30(4):548–560CrossRef
7.
go back to reference Jones DJ, Roziere J (2001) Recent advances in the functionalisation of polybenzimadazole and polyetherketone for fuel cell application. J Membr Sci 185:41–58CrossRef Jones DJ, Roziere J (2001) Recent advances in the functionalisation of polybenzimadazole and polyetherketone for fuel cell application. J Membr Sci 185:41–58CrossRef
8.
go back to reference Asensio JA, Borros S, Gomez-Romero P (2002) Proton—conducting polymers based on benzimadazole and sulphonatedbenzimadazole. J Membr Sci 40:3703–3710 Asensio JA, Borros S, Gomez-Romero P (2002) Proton—conducting polymers based on benzimadazole and sulphonatedbenzimadazole. J Membr Sci 40:3703–3710
9.
go back to reference Alberti G, Casciola M, Massinelli L, Bauer B (2001) Polymeric proton conducting membrane for medium temperature fuel cells (110–160 C). J Membr Sci 185:73–81CrossRef Alberti G, Casciola M, Massinelli L, Bauer B (2001) Polymeric proton conducting membrane for medium temperature fuel cells (110–160 C). J Membr Sci 185:73–81CrossRef
10.
go back to reference Rikykawa M, Sanui K (2000) Proton conducting polymer electrolyte membrane based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502CrossRef Rikykawa M, Sanui K (2000) Proton conducting polymer electrolyte membrane based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502CrossRef
11.
go back to reference Wang F, Hickner M, Kim YS, Zawodzinski TA, Mcgrath JE (2002) Direct polymerisation of sulphonated poly ( arylene ether sulfone ) random (statistical) copolymers: candidates for new proton exchange membranes. J Membr Sci 197:231–242CrossRef Wang F, Hickner M, Kim YS, Zawodzinski TA, Mcgrath JE (2002) Direct polymerisation of sulphonated poly ( arylene ether sulfone ) random (statistical) copolymers: candidates for new proton exchange membranes. J Membr Sci 197:231–242CrossRef
12.
go back to reference Kerres J, Ullrich A, Meier F, Haring T (1999) Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells. Solid State Ion 125:243–249CrossRef Kerres J, Ullrich A, Meier F, Haring T (1999) Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells. Solid State Ion 125:243–249CrossRef
13.
go back to reference Genies C, Mercier R, Silicon B, Cornet N, Gebel G, Pineri M (2001) Soluble sulphonatednaphthalenic polyimides as materials for proton exchange membranes. Polymer 42:359–373CrossRef Genies C, Mercier R, Silicon B, Cornet N, Gebel G, Pineri M (2001) Soluble sulphonatednaphthalenic polyimides as materials for proton exchange membranes. Polymer 42:359–373CrossRef
14.
go back to reference Guo X, Fang J, Warari T, Tanaka K, Kita H, Okamoto K (2002) Non sulphonated polyimides as polyelectrolytes for fuel cell application. 2. Synthesis and proton conductivity of polyimides from 9,9-bis (aminiphenyl) fluorine-2, 7 disulphonic acid. Macromolecules 35:6707–6713CrossRef Guo X, Fang J, Warari T, Tanaka K, Kita H, Okamoto K (2002) Non sulphonated polyimides as polyelectrolytes for fuel cell application. 2. Synthesis and proton conductivity of polyimides from 9,9-bis (aminiphenyl) fluorine-2, 7 disulphonic acid. Macromolecules 35:6707–6713CrossRef
15.
go back to reference Vishnupriya B, Ramya K, Dhathathreyan KS (2002) Synthesis and characterization of sulfonated poly (phenylene oxides) as membranes for polymer electrolyte membranes fuel cells. J Appl Polym Sci 83:1792–1797CrossRef Vishnupriya B, Ramya K, Dhathathreyan KS (2002) Synthesis and characterization of sulfonated poly (phenylene oxides) as membranes for polymer electrolyte membranes fuel cells. J Appl Polym Sci 83:1792–1797CrossRef
16.
go back to reference Jorissen L, Gogel V, Kerres J, Garche J (2002) New membrane for direct methanol fuel cells. J Power Sources 105:267–273CrossRef Jorissen L, Gogel V, Kerres J, Garche J (2002) New membrane for direct methanol fuel cells. J Power Sources 105:267–273CrossRef
17.
go back to reference Kerres K, Ulrich A, Hein M, Gogel V, Friedrich KA (2004) Cross-linked polyaryl blend membranes for polymer electrolyte fuel cells. Fuel Cells 105–112 Kerres K, Ulrich A, Hein M, Gogel V, Friedrich KA (2004) Cross-linked polyaryl blend membranes for polymer electrolyte fuel cells. Fuel Cells 105–112
18.
go back to reference Yamada M, Honma I (2003) Proton conducting acid base mixed materials under water free condition. Electrochim Acta 48:2411–2415CrossRef Yamada M, Honma I (2003) Proton conducting acid base mixed materials under water free condition. Electrochim Acta 48:2411–2415CrossRef
19.
go back to reference Gao Y, Robertson GP, Guiver MD, Jian X, Mikhailenk SD, Kaliguine S (2005) proton exchange membranes based on sulfonated poly (phthalazinone ether ketone)s/aminated polymer blends. Solid State Ion 176:409–415CrossRef Gao Y, Robertson GP, Guiver MD, Jian X, Mikhailenk SD, Kaliguine S (2005) proton exchange membranes based on sulfonated poly (phthalazinone ether ketone)s/aminated polymer blends. Solid State Ion 176:409–415CrossRef
20.
go back to reference Nolte R, Ledjeff K, Bauer M, Mulhaupt R (1993) Partially sulfonepoly(arylene ether sulfone)- a versatile proton conducting membrane material for modern energy conversion technologies. J Membr Sci 83:211–220CrossRef Nolte R, Ledjeff K, Bauer M, Mulhaupt R (1993) Partially sulfonepoly(arylene ether sulfone)- a versatile proton conducting membrane material for modern energy conversion technologies. J Membr Sci 83:211–220CrossRef
21.
go back to reference Kerres J, Cui W, Junginger M (1998) Development and characterization crosslinkedionomer membranes based upon sulfonated and sulfonated PSU; cross-linked PSU blend membranes by alkylation of sulfinate groups with dihalogenoalkanes. J Membr Sci 139:227–241CrossRef Kerres J, Cui W, Junginger M (1998) Development and characterization crosslinkedionomer membranes based upon sulfonated and sulfonated PSU; cross-linked PSU blend membranes by alkylation of sulfinate groups with dihalogenoalkanes. J Membr Sci 139:227–241CrossRef
22.
go back to reference Mikhailenko SD, Wang K, Kaliaguine S, Xing P, Robertson GP, Guiver MD (2004) Proton conducting membranes based on cross-linked sulfonated Poly (ether ether ketone) (SPEEK). J Membr Sci 233:93–99CrossRef Mikhailenko SD, Wang K, Kaliaguine S, Xing P, Robertson GP, Guiver MD (2004) Proton conducting membranes based on cross-linked sulfonated Poly (ether ether ketone) (SPEEK). J Membr Sci 233:93–99CrossRef
23.
go back to reference Rhim JW, Park HB, Lee C, Jun J, Kim DS, Lee YM (2004) Crosslinked Poly(vinyl alcohol) membranes containing sulfonic acid groups; proton and methanol transport through membranes. J Membr Sci 238:143–151CrossRef Rhim JW, Park HB, Lee C, Jun J, Kim DS, Lee YM (2004) Crosslinked Poly(vinyl alcohol) membranes containing sulfonic acid groups; proton and methanol transport through membranes. J Membr Sci 238:143–151CrossRef
24.
go back to reference Kerres JA (2005) Blended and cross-linked ionomer membranes for application in membrane fuel cells. Fuel Cells 5:230–247CrossRef Kerres JA (2005) Blended and cross-linked ionomer membranes for application in membrane fuel cells. Fuel Cells 5:230–247CrossRef
25.
go back to reference Sangeetha D (2004) Sulphonated polystyrene–block – poly (ethylene –ran –butylene)-block polystyrene as polymer electrolytes for proton exchange membrane fuel cell. Int J Plast Technol 8:313–321 Sangeetha D (2004) Sulphonated polystyrene–block – poly (ethylene –ran –butylene)-block polystyrene as polymer electrolytes for proton exchange membrane fuel cell. Int J Plast Technol 8:313–321
26.
go back to reference Ong A-L, Jung G-B, Chia-Ching W, Wei-Mon Y (2010) Single-step fabrication of ABPBI-based GDE and study of its MEA characteristics for high-temperature PEM fuel cells. Int J Hydrogen Energy 35:7866–7873CrossRef Ong A-L, Jung G-B, Chia-Ching W, Wei-Mon Y (2010) Single-step fabrication of ABPBI-based GDE and study of its MEA characteristics for high-temperature PEM fuel cells. Int J Hydrogen Energy 35:7866–7873CrossRef
27.
go back to reference Bussayajarn N, Ming H, Hoong KK, Wan SYM, Chan SH (2009) Planar air breathing PEMFC with self-humidifying MEA and open cathode geometry design for portable applications. Int J Hydrogen Energy 34:7761–7767CrossRef Bussayajarn N, Ming H, Hoong KK, Wan SYM, Chan SH (2009) Planar air breathing PEMFC with self-humidifying MEA and open cathode geometry design for portable applications. Int J Hydrogen Energy 34:7761–7767CrossRef
28.
go back to reference Helen M, Visvanathan B, Srinivasamurthy S (2006) Fabrication and properties of hybrid membranes based on salts of heteropolyacid, zirconium phosphate and poly vinyl alcohol. J Power Sources 163:433–439CrossRef Helen M, Visvanathan B, Srinivasamurthy S (2006) Fabrication and properties of hybrid membranes based on salts of heteropolyacid, zirconium phosphate and poly vinyl alcohol. J Power Sources 163:433–439CrossRef
29.
go back to reference Vinoth R, Ilakiya A, Elamathi S, Sangeetha D (2010) A novel exchange membrane from polystyrene (ethylene butylene) polystyrene: synthesis and characterization. Mat Sci Eng B 167:43–50CrossRef Vinoth R, Ilakiya A, Elamathi S, Sangeetha D (2010) A novel exchange membrane from polystyrene (ethylene butylene) polystyrene: synthesis and characterization. Mat Sci Eng B 167:43–50CrossRef
30.
go back to reference Kim et al (2007) Influence of silica content in cross linked PVA/PSSA-MA/silica hybrid membranefor direct methanol fuel cell(DMFC). Micromol Res 15:PP 412–417CrossRef Kim et al (2007) Influence of silica content in cross linked PVA/PSSA-MA/silica hybrid membranefor direct methanol fuel cell(DMFC). Micromol Res 15:PP 412–417CrossRef
Metadata
Title
Glutaraldehyde cross-linked sulphonated poly styrene ethylene butylene poly styrene membranes for methanol fuel cells
Authors
Perumal Bhavani
Dharmalingam Sangeetha
Publication date
01-06-2015
Publisher
Springer India
Published in
International Journal of Plastics Technology / Issue 1/2015
Print ISSN: 0972-656X
Electronic ISSN: 0975-072X
DOI
https://doi.org/10.1007/s12588-015-9103-6

Other articles of this Issue 1/2015

International Journal of Plastics Technology 1/2015 Go to the issue

Premium Partners