Skip to main content
Top

2024 | OriginalPaper | Chapter

Gold Nanoparticles as Antibacterial and Antiviral Agents: Biomedical Applications and Theranostic Potential

Authors : Muniraj Gnanaraj, Natarajan Sisubalan, T. Jebastin, Arumugam Vijayan, T. Muneeshwaran, R. Manikandan

Published in: Nanoparticles in Modern Antimicrobial and Antiviral Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Gold nanoparticles (AuNPs) address several biomedical issues and they have garnered significant attention as incredibly promising materials. In recent years, many emerging infectious diseases caused by multi-resistant bacteria or viruses have given rise to some life-threatening disorders. In order to create novel medicines for the treatment of diseases and the emergence of multidrug-resistant strains, creative approaches are now necessary due to the dearth of new antibiotics. In this context, AuNPs have become a subject of interest for many research groups because of their good stability and excellent biocompatibility. According to various studies, AuNPs and gold-based compounds are very effective at killing bacteria and viruses by disrupting the cell membrane and inducing oxidative stress, apoptosis, and synergy. As an excellent drug carrier and large surface area, the antibacterial characteristics of AuNPs can be improved by altering their structure and size, or including other substances. After being modified and coupled with existing antibacterial medications, the AuNPs can play better antibacterial or antiviral activities against some novel diseases. This review focuses on AuNPs’ biological activities and their potential future biomedical applications as antiviral and antibacterial nanotheranostic agents.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agnihotri, M., Joshi, S., Kumar, A. R., Zinjarde, S., & Kulkarni, S. (2009). Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Materials Letters, 63(15), 1231–1234.CrossRef Agnihotri, M., Joshi, S., Kumar, A. R., Zinjarde, S., & Kulkarni, S. (2009). Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Materials Letters, 63(15), 1231–1234.CrossRef
go back to reference Ahmad, R., Griffete, N., Lamouri, A., Felidj, N., Chehimi, M. M., & Mangeney, C. (2015). Nanocomposites of gold nanoparticles@ molecularly imprinted polymers: Chemistry, processing, and applications in sensors. Chemistry of Materials, 27(16), 5464–5478.CrossRef Ahmad, R., Griffete, N., Lamouri, A., Felidj, N., Chehimi, M. M., & Mangeney, C. (2015). Nanocomposites of gold nanoparticles@ molecularly imprinted polymers: Chemistry, processing, and applications in sensors. Chemistry of Materials, 27(16), 5464–5478.CrossRef
go back to reference Ahmad, N., Muhammad, J., Khan, K., Ali, W., Fazal, H., Ali, M., et al. (2022). Silver and gold nanoparticles induced differential antimicrobial potential in calli cultures of Prunella vulgaris. BMC Chemistry, 16(1), 20.PubMedPubMedCentralCrossRef Ahmad, N., Muhammad, J., Khan, K., Ali, W., Fazal, H., Ali, M., et al. (2022). Silver and gold nanoparticles induced differential antimicrobial potential in calli cultures of Prunella vulgaris. BMC Chemistry, 16(1), 20.PubMedPubMedCentralCrossRef
go back to reference Ahmed, H. M., Roy, A., Wahab, M., Ahmed, M., Othman-Qadir, G., Elesawy, B. H., et al. (2021). Applications of nanomaterials in agrifood and pharmaceutical industry. Journal of Nanomaterials, 2021, 1–10.CrossRef Ahmed, H. M., Roy, A., Wahab, M., Ahmed, M., Othman-Qadir, G., Elesawy, B. H., et al. (2021). Applications of nanomaterials in agrifood and pharmaceutical industry. Journal of Nanomaterials, 2021, 1–10.CrossRef
go back to reference Alexander, J. L., Thompson, Z., & Cowan, J. A. (2018). Antimicrobial metallopeptides. ACS Chemical Biology, 13(4), 844–853.PubMedCrossRef Alexander, J. L., Thompson, Z., & Cowan, J. A. (2018). Antimicrobial metallopeptides. ACS Chemical Biology, 13(4), 844–853.PubMedCrossRef
go back to reference Aljohani, F. S., Hamed, M. T., Bakr, B. A., Shahin, Y. H., Abu-Serie, M. M., Awaad, A. K., et al. (2022). In vivo bio-distribution and acute toxicity evaluation of greenly synthesized ultra-small gold nanoparticles with different biological activities. Scientific Reports, 12(1), 6269.PubMedPubMedCentralCrossRef Aljohani, F. S., Hamed, M. T., Bakr, B. A., Shahin, Y. H., Abu-Serie, M. M., Awaad, A. K., et al. (2022). In vivo bio-distribution and acute toxicity evaluation of greenly synthesized ultra-small gold nanoparticles with different biological activities. Scientific Reports, 12(1), 6269.PubMedPubMedCentralCrossRef
go back to reference Ameen, F., Al-Maary, K. S., Almansob, A., & AlNadhari, S. (2023). Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora-mediated gold nanoparticles. Applied Nanoscience, 13(3), 2233–2240.CrossRef Ameen, F., Al-Maary, K. S., Almansob, A., & AlNadhari, S. (2023). Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora-mediated gold nanoparticles. Applied Nanoscience, 13(3), 2233–2240.CrossRef
go back to reference Austin, L. A., Mackey, M. A., Dreaden, E. C., & El-Sayed, M. A. (2014). The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Archives of Toxicology, 88, 1391–1417.PubMedPubMedCentralCrossRef Austin, L. A., Mackey, M. A., Dreaden, E. C., & El-Sayed, M. A. (2014). The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Archives of Toxicology, 88, 1391–1417.PubMedPubMedCentralCrossRef
go back to reference Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., Martins, M., & Fernandes, A. R. (2018). Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”. Frontiers in Microbiology, 9, 1441.PubMedPubMedCentralCrossRef Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., Martins, M., & Fernandes, A. R. (2018). Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”. Frontiers in Microbiology, 9, 1441.PubMedPubMedCentralCrossRef
go back to reference Baram-Pinto, D., Shukla, S., Gedanken, A., & Sarid, R. (2010). Inhibition of HSV-1 attachment, entry, and cell-to-cell spread by functionalized multivalent gold nanoparticles. Small, 6(9), 1044–1050.PubMedCrossRef Baram-Pinto, D., Shukla, S., Gedanken, A., & Sarid, R. (2010). Inhibition of HSV-1 attachment, entry, and cell-to-cell spread by functionalized multivalent gold nanoparticles. Small, 6(9), 1044–1050.PubMedCrossRef
go back to reference Behzad, F., Naghib, S. M., Tabatabaei, S. N., Zare, Y., & Rhee, K. Y. (2021). An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications. Journal of Industrial and Engineering Chemistry, 94, 92–104.CrossRef Behzad, F., Naghib, S. M., Tabatabaei, S. N., Zare, Y., & Rhee, K. Y. (2021). An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications. Journal of Industrial and Engineering Chemistry, 94, 92–104.CrossRef
go back to reference Belloni, J., Marignier, J. L., & Mostafavi, M. (2020). Mechanisms of metal nanoparticles nucleation and growth studied by radiolysis. Radiation Physics and Chemistry, 169, 107952. Belloni, J., Marignier, J. L., & Mostafavi, M. (2020). Mechanisms of metal nanoparticles nucleation and growth studied by radiolysis. Radiation Physics and Chemistry, 169, 107952.
go back to reference Berbec, S., Żołądek, S., Jabłońska, A., & Pałys, B. (2018). Electrochemically reduced graphene oxide on gold nanoparticles modified with a polyoxomolybdate film. Highly sensitive non-enzymatic electrochemical detection of H2O2. Sensors and Actuators B: Chemical, 258, 745–756.CrossRef Berbec, S., Żołądek, S., Jabłońska, A., & Pałys, B. (2018). Electrochemically reduced graphene oxide on gold nanoparticles modified with a polyoxomolybdate film. Highly sensitive non-enzymatic electrochemical detection of H2O2. Sensors and Actuators B: Chemical, 258, 745–756.CrossRef
go back to reference Bharadwaj, K. K., Rabha, B., Pati, S., Sarkar, T., Choudhury, B. K., Barman, A., et al. (2021). Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules, 26(21), 6389.PubMedPubMedCentralCrossRef Bharadwaj, K. K., Rabha, B., Pati, S., Sarkar, T., Choudhury, B. K., Barman, A., et al. (2021). Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules, 26(21), 6389.PubMedPubMedCentralCrossRef
go back to reference Biehler, E., Quach, Q., & Abdel-Fattah, T. M. (2023). Gold nanoparticles AuNP decorated on fused graphene-like materials for application in a hydrogen generation. Materials, 16(13), 4779.PubMedPubMedCentralCrossRef Biehler, E., Quach, Q., & Abdel-Fattah, T. M. (2023). Gold nanoparticles AuNP decorated on fused graphene-like materials for application in a hydrogen generation. Materials, 16(13), 4779.PubMedPubMedCentralCrossRef
go back to reference Bolanos, K., Kogan, M. J., & Araya, E. (2019). Capping gold nanoparticles with albumin to improve their biomedical properties. International Journal of Nanomedicine, 14, 6387–6406.PubMedPubMedCentralCrossRef Bolanos, K., Kogan, M. J., & Araya, E. (2019). Capping gold nanoparticles with albumin to improve their biomedical properties. International Journal of Nanomedicine, 14, 6387–6406.PubMedPubMedCentralCrossRef
go back to reference Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications., 7, 801–802.CrossRef Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications., 7, 801–802.CrossRef
go back to reference Budhadev, D., Poole, E., Nehlmeier, I., Liu, Y., Hooper, J., Kalverda, E., et al. (2020). Glycan-gold nanoparticles as multifunctional probes for multivalent lectin–carbohydrate binding: Implications for blocking virus infection and nanoparticle assembly. Journal of the American Chemical Society, 142(42), 18022–18034.PubMedCrossRef Budhadev, D., Poole, E., Nehlmeier, I., Liu, Y., Hooper, J., Kalverda, E., et al. (2020). Glycan-gold nanoparticles as multifunctional probes for multivalent lectin–carbohydrate binding: Implications for blocking virus infection and nanoparticle assembly. Journal of the American Chemical Society, 142(42), 18022–18034.PubMedCrossRef
go back to reference Byrne, H. J., Lynch, I., De Jong, W. H., Kreyling, W. G., Loft, S., Park, M. V. D. Z., et al. (2010). Protocols for assessment of biological hazards of engineered nanomaterials. NanoImpactNet Reports. Byrne, H. J., Lynch, I., De Jong, W. H., Kreyling, W. G., Loft, S., Park, M. V. D. Z., et al. (2010). Protocols for assessment of biological hazards of engineered nanomaterials. NanoImpactNet Reports.
go back to reference Cagno, V., Andreozzi, P., D’Alicarnasso, M., Jacob Silva, P., Mueller, M., Galloux, M., et al. (2018). Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nature Materials, 17(2), 195–203.PubMedCrossRef Cagno, V., Andreozzi, P., D’Alicarnasso, M., Jacob Silva, P., Mueller, M., Galloux, M., et al. (2018). Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nature Materials, 17(2), 195–203.PubMedCrossRef
go back to reference Castro-Longoria, E., Vilchis-Nestor, A. R., & Avalos-Borja, M. (2011). Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids and Surfaces B: Biointerfaces, 83(1), 42–48.PubMedCrossRef Castro-Longoria, E., Vilchis-Nestor, A. R., & Avalos-Borja, M. (2011). Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids and Surfaces B: Biointerfaces, 83(1), 42–48.PubMedCrossRef
go back to reference Chen, L., & Liang, J. (2020). An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Materials Science and Engineering: C, 112, 110924.PubMedCrossRef Chen, L., & Liang, J. (2020). An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Materials Science and Engineering: C, 112, 110924.PubMedCrossRef
go back to reference Cherian, T., Maity, D., Rajendra Kumar, R. T., Balasubramani, G., Ragavendran, C., Yalla, S., et al. (2022). Green chemistry based gold nanoparticles synthesis using the marine bacterium Lysinibacillus odysseyi PBCW2 and their multitudinous activities. Nanomaterials, 12(17), 2940.PubMedPubMedCentralCrossRef Cherian, T., Maity, D., Rajendra Kumar, R. T., Balasubramani, G., Ragavendran, C., Yalla, S., et al. (2022). Green chemistry based gold nanoparticles synthesis using the marine bacterium Lysinibacillus odysseyi PBCW2 and their multitudinous activities. Nanomaterials, 12(17), 2940.PubMedPubMedCentralCrossRef
go back to reference Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J., & Wyatt, M. D. (2005). Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 1(3), 325–327.PubMedCrossRef Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J., & Wyatt, M. D. (2005). Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 1(3), 325–327.PubMedCrossRef
go back to reference Cui, Y., Zhao, Y., Tian, Y., Zhang, W., Lü, X., & Jiang, X. (2012). The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials, 33(7), 2327–2333.PubMedCrossRef Cui, Y., Zhao, Y., Tian, Y., Zhang, W., Lü, X., & Jiang, X. (2012). The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials, 33(7), 2327–2333.PubMedCrossRef
go back to reference De Crozals, G., Bonnet, R., Farre, C., & Chaix, C. (2016). Nanoparticles with multiple properties for biomedical applications: A strategic guide. Nano Today, 11(4), 435–463.CrossRef De Crozals, G., Bonnet, R., Farre, C., & Chaix, C. (2016). Nanoparticles with multiple properties for biomedical applications: A strategic guide. Nano Today, 11(4), 435–463.CrossRef
go back to reference Dey, G. R., El Omar, A. K., Jacob, J. A., Mostafavi, M., & Belloni, J. (2011). Mechanism of trivalent gold reduction and reactivity of transient divalent and monovalent gold ions studied by gamma and pulse radiolysis. The Journal of Physical Chemistry A, 115(4), 383–391.PubMedCrossRef Dey, G. R., El Omar, A. K., Jacob, J. A., Mostafavi, M., & Belloni, J. (2011). Mechanism of trivalent gold reduction and reactivity of transient divalent and monovalent gold ions studied by gamma and pulse radiolysis. The Journal of Physical Chemistry A, 115(4), 383–391.PubMedCrossRef
go back to reference Dispenza, C., Spadaro, G., & Jonsson, M. (2017). Radiation engineering of multifunctional nanogels. In Applications of radiation chemistry in the fields of industry, biotechnology and environment (pp. 95–120).CrossRef Dispenza, C., Spadaro, G., & Jonsson, M. (2017). Radiation engineering of multifunctional nanogels. In Applications of radiation chemistry in the fields of industry, biotechnology and environment (pp. 95–120).CrossRef
go back to reference Do, P. Q. T., Huong, V. T., Phuong, N. T. T., Nguyen, T. H., Ta, H. K. T., Ju, H., et al. (2020). The highly sensitive determination of serotonin by using gold nanoparticles (Au NPs) with a localized surface plasmon resonance (LSPR) absorption wavelength in the visible region. RSC Advances, 10(51), 30858–30869.PubMedPubMedCentralCrossRef Do, P. Q. T., Huong, V. T., Phuong, N. T. T., Nguyen, T. H., Ta, H. K. T., Ju, H., et al. (2020). The highly sensitive determination of serotonin by using gold nanoparticles (Au NPs) with a localized surface plasmon resonance (LSPR) absorption wavelength in the visible region. RSC Advances, 10(51), 30858–30869.PubMedPubMedCentralCrossRef
go back to reference Doghish, A. S., Hashem, A. H., Shehabeldine, A. M., Sallam, A. A. M., El-Sayyad, G. S., & Salem, S. S. (2022). Nanocomposite based on gold nanoparticles and carboxymethyl cellulose: Synthesis, characterization, antimicrobial, and anticancer activities. Journal of Drug Delivery Science and Technology, 77, 103874.CrossRef Doghish, A. S., Hashem, A. H., Shehabeldine, A. M., Sallam, A. A. M., El-Sayyad, G. S., & Salem, S. S. (2022). Nanocomposite based on gold nanoparticles and carboxymethyl cellulose: Synthesis, characterization, antimicrobial, and anticancer activities. Journal of Drug Delivery Science and Technology, 77, 103874.CrossRef
go back to reference Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., & El-Sayed, M. A. (2012). The golden age: Gold nanoparticles for biomedicine. Chemical Society Reviews, 41(7), 2740–2779.PubMedCrossRef Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., & El-Sayed, M. A. (2012). The golden age: Gold nanoparticles for biomedicine. Chemical Society Reviews, 41(7), 2740–2779.PubMedCrossRef
go back to reference Du, B., Tian, L., Gu, X., Li, D., Wang, E., & Wang, J. (2015). Anionic lipid, pH-sensitive liposome-gold nanoparticle hybrids for gene delivery–quantitative research of the mechanism. Small, 11(19), 2333–2340.PubMedCrossRef Du, B., Tian, L., Gu, X., Li, D., Wang, E., & Wang, J. (2015). Anionic lipid, pH-sensitive liposome-gold nanoparticle hybrids for gene delivery–quantitative research of the mechanism. Small, 11(19), 2333–2340.PubMedCrossRef
go back to reference Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1–24.PubMedPubMedCentralCrossRef Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1–24.PubMedPubMedCentralCrossRef
go back to reference Edwards, P. P., & Thomas, J. M. (2007). Gold in a metallic divided state—From faraday to present-day nanoscience. Angewandte Chemie International Edition, 46(29), 5480–5486.PubMedCrossRef Edwards, P. P., & Thomas, J. M. (2007). Gold in a metallic divided state—From faraday to present-day nanoscience. Angewandte Chemie International Edition, 46(29), 5480–5486.PubMedCrossRef
go back to reference Fan, J., Cheng, Y., & Sun, M. (2020). Functionalized gold nanoparticles: Synthesis, properties and biomedical applications. The Chemical Record, 20(12), 1474–1504.PubMedCrossRef Fan, J., Cheng, Y., & Sun, M. (2020). Functionalized gold nanoparticles: Synthesis, properties and biomedical applications. The Chemical Record, 20(12), 1474–1504.PubMedCrossRef
go back to reference Farzin, L., Shamsipur, M., Samandari, L., & Sheibani, S. (2020). HIV biosensors for early diagnosis of infection: The intertwine of nanotechnology with sensing strategies. Talanta, 206, 120201.PubMedCrossRef Farzin, L., Shamsipur, M., Samandari, L., & Sheibani, S. (2020). HIV biosensors for early diagnosis of infection: The intertwine of nanotechnology with sensing strategies. Talanta, 206, 120201.PubMedCrossRef
go back to reference Fischer, H. C., & Chan, W. C. (2007). Nanotoxicity: The growing need for in vivo study. Current Opinion in Biotechnology, 18(6), 565–571.PubMedCrossRef Fischer, H. C., & Chan, W. C. (2007). Nanotoxicity: The growing need for in vivo study. Current Opinion in Biotechnology, 18(6), 565–571.PubMedCrossRef
go back to reference Ghaffari, E., Rezatofighi, S. E., Ardakani, M. R., & Rastegarzadeh, S. (2019). Delivery of antisense peptide nucleic acid by gold nanoparticles for the inhibition of virus replication. Nanomedicine, 14(14), 1827–1840.PubMedCrossRef Ghaffari, E., Rezatofighi, S. E., Ardakani, M. R., & Rastegarzadeh, S. (2019). Delivery of antisense peptide nucleic acid by gold nanoparticles for the inhibition of virus replication. Nanomedicine, 14(14), 1827–1840.PubMedCrossRef
go back to reference Ghosal, K. (2023). Tackling COVID-19 using antiviral nanocoating’s—Recent Progress and future challenges. Particle & Particle Systems Characterization, 40(1), 2200154.CrossRef Ghosal, K. (2023). Tackling COVID-19 using antiviral nanocoating’s—Recent Progress and future challenges. Particle & Particle Systems Characterization, 40(1), 2200154.CrossRef
go back to reference Giasuddin, A. S. M., Jhuma, K. A., & Haq, A. M. (2012). Use of gold nanoparticles in diagnostics, surgery and medicine: A review. Bangladesh Journal of Medical Biochemistry, 5(2), 56–60.CrossRef Giasuddin, A. S. M., Jhuma, K. A., & Haq, A. M. (2012). Use of gold nanoparticles in diagnostics, surgery and medicine: A review. Bangladesh Journal of Medical Biochemistry, 5(2), 56–60.CrossRef
go back to reference Gou, X. X., Liu, T., Wang, Y. Y., & Han, Y. F. (2020). Ultrastable and highly catalytically active N-heterocyclic-Carbene-stabilized gold nanoparticles in confined spaces. Angewandte Chemie International Edition, 59(38), 16683–16689.PubMedCrossRef Gou, X. X., Liu, T., Wang, Y. Y., & Han, Y. F. (2020). Ultrastable and highly catalytically active N-heterocyclic-Carbene-stabilized gold nanoparticles in confined spaces. Angewandte Chemie International Edition, 59(38), 16683–16689.PubMedCrossRef
go back to reference Guglielmelli, A., Rosa, P., Contardi, M., Prato, M., Mangino, G., Miglietta, S., et al. (2020). Biomimetic keratin gold nanoparticle-mediated in vitro photothermal therapy on glioblastoma multiforme. Nanomedicine, 16(2), 121–138.CrossRef Guglielmelli, A., Rosa, P., Contardi, M., Prato, M., Mangino, G., Miglietta, S., et al. (2020). Biomimetic keratin gold nanoparticle-mediated in vitro photothermal therapy on glioblastoma multiforme. Nanomedicine, 16(2), 121–138.CrossRef
go back to reference Gupta, N., & Malviya, R. (2021). Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1875(2), 188532.PubMedCrossRef Gupta, N., & Malviya, R. (2021). Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1875(2), 188532.PubMedCrossRef
go back to reference Gupta, R., & Xie, H. (2018). Nanoparticles in daily life: Applications, toxicity and regulations. Journal of Environmental Pathology, Toxicology and Oncology, 37(3), 209.PubMedPubMedCentralCrossRef Gupta, R., & Xie, H. (2018). Nanoparticles in daily life: Applications, toxicity and regulations. Journal of Environmental Pathology, Toxicology and Oncology, 37(3), 209.PubMedPubMedCentralCrossRef
go back to reference Gupta, A., Mumtaz, S., Li, C. H., Hussain, I., & Rotello, V. M. (2019). Combatting antibiotic-resistant bacteria using nanomaterials. Chemical Society Reviews, 48(2), 415–427.PubMedPubMedCentralCrossRef Gupta, A., Mumtaz, S., Li, C. H., Hussain, I., & Rotello, V. M. (2019). Combatting antibiotic-resistant bacteria using nanomaterials. Chemical Society Reviews, 48(2), 415–427.PubMedPubMedCentralCrossRef
go back to reference Hammami, I., & Alabdallah, N. M. (2021). Gold nanoparticles: Synthesis properties and applications. Journal of King Saud University-Science, 33(7), 101560.CrossRef Hammami, I., & Alabdallah, N. M. (2021). Gold nanoparticles: Synthesis properties and applications. Journal of King Saud University-Science, 33(7), 101560.CrossRef
go back to reference Hassan, H., Sharma, P., Hasan, M. R., Singh, S., Thakur, D., & Narang, J. (2022). Gold nanomaterials–The golden approach from synthesis to applications. Materials Science for Energy Technologies, 5, 375.CrossRef Hassan, H., Sharma, P., Hasan, M. R., Singh, S., Thakur, D., & Narang, J. (2022). Gold nanomaterials–The golden approach from synthesis to applications. Materials Science for Energy Technologies, 5, 375.CrossRef
go back to reference He, K., Jiang, Y., Wang, T., Liu, Z., Wang, M., Pan, L., & Chen, X. (2022). Assemblies and composites of gold nanostructures for functional devices: Nanoscience: Special Issue Dedicated to Professor Paul S. Weiss. Aggregate, 3(4), e57.CrossRef He, K., Jiang, Y., Wang, T., Liu, Z., Wang, M., Pan, L., & Chen, X. (2022). Assemblies and composites of gold nanostructures for functional devices: Nanoscience: Special Issue Dedicated to Professor Paul S. Weiss. Aggregate, 3(4), e57.CrossRef
go back to reference Herizchi, R., Abbasi, E., Milani, M., & Akbarzadeh, A. (2016). Current methods for synthesis of gold nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 44(2), 596–602.PubMedCrossRef Herizchi, R., Abbasi, E., Milani, M., & Akbarzadeh, A. (2016). Current methods for synthesis of gold nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 44(2), 596–602.PubMedCrossRef
go back to reference Hernandez-Díaz, J. A., Garza-García, J. J., Zamudio-Ojeda, A., León-Morales, J. M., López-Velázquez, J. C., & García-Morales, S. (2021). Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. Journal of the Science of Food and Agriculture, 101(4), 1270–1287.PubMedCrossRef Hernandez-Díaz, J. A., Garza-García, J. J., Zamudio-Ojeda, A., León-Morales, J. M., López-Velázquez, J. C., & García-Morales, S. (2021). Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. Journal of the Science of Food and Agriculture, 101(4), 1270–1287.PubMedCrossRef
go back to reference Hoshyar, N., Gray, S., Han, H., & Bao, G. (2016). The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine, 11(6), 673–692.PubMedPubMedCentralCrossRef Hoshyar, N., Gray, S., Han, H., & Bao, G. (2016). The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine, 11(6), 673–692.PubMedPubMedCentralCrossRef
go back to reference Hosny, M., Fawzy, M., El-Badry, Y. A., Hussein, E. E., & Eltaweil, A. S. (2022a). Plant-assisted synthesis of gold nanoparticles for photocatalytic, anticancer, and antioxidant applications. Journal of Saudi Chemical Society, 26(2), 101419.CrossRef Hosny, M., Fawzy, M., El-Badry, Y. A., Hussein, E. E., & Eltaweil, A. S. (2022a). Plant-assisted synthesis of gold nanoparticles for photocatalytic, anticancer, and antioxidant applications. Journal of Saudi Chemical Society, 26(2), 101419.CrossRef
go back to reference Hosny, M., Eltaweil, A. S., Mostafa, M., El-Badry, Y. A., Hussein, E. E., Omer, A. M., & Fawzy, M. (2022b). Facile synthesis of gold nanoparticles for anticancer, antioxidant applications, and photocatalytic degradation of toxic organic pollutants. ACS Omega, 7(3), 3121–3133.PubMedPubMedCentralCrossRef Hosny, M., Eltaweil, A. S., Mostafa, M., El-Badry, Y. A., Hussein, E. E., Omer, A. M., & Fawzy, M. (2022b). Facile synthesis of gold nanoparticles for anticancer, antioxidant applications, and photocatalytic degradation of toxic organic pollutants. ACS Omega, 7(3), 3121–3133.PubMedPubMedCentralCrossRef
go back to reference Hryniewicz, B. M., Volpe, J., Bach-Toledo, L., Kurpel, K. C., Deller, A. E., Soares, A. L., et al. (2022). Development of polypyrrole (nano) structures decorated with gold nanoparticles toward immunosensing for COVID-19 serological diagnosis. Materials Today Chemistry, 24, 100817.PubMedPubMedCentralCrossRef Hryniewicz, B. M., Volpe, J., Bach-Toledo, L., Kurpel, K. C., Deller, A. E., Soares, A. L., et al. (2022). Development of polypyrrole (nano) structures decorated with gold nanoparticles toward immunosensing for COVID-19 serological diagnosis. Materials Today Chemistry, 24, 100817.PubMedPubMedCentralCrossRef
go back to reference Hu, M., Chen, J., Li, Z. Y., Au, L., Hartland, G. V., Li, X., et al. (2006). Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chemical Society Reviews, 35(11), 1084–1094.PubMedCrossRef Hu, M., Chen, J., Li, Z. Y., Au, L., Hartland, G. V., Li, X., et al. (2006). Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chemical Society Reviews, 35(11), 1084–1094.PubMedCrossRef
go back to reference Huang, C. J., Chiu, P. H., Wang, Y. H., Chen, K. L., Linn, J. J., & Yang, C. F. (2006). Electrochemically controlling the size of gold nanoparticles. Journal of the Electrochemical Society, 153(12), D193.CrossRef Huang, C. J., Chiu, P. H., Wang, Y. H., Chen, K. L., Linn, J. J., & Yang, C. F. (2006). Electrochemically controlling the size of gold nanoparticles. Journal of the Electrochemical Society, 153(12), D193.CrossRef
go back to reference Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (London, England), 2(5), 681–693.PubMedCrossRef Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (London, England), 2(5), 681–693.PubMedCrossRef
go back to reference Huang, H., Zhao, J., Weng, B., Lai, F., Zhang, M., Hofkens, J., et al. (2022). Site-sensitive selective CO2 Photoreduction to CO over gold nanoparticles. Angewandte Chemie International Edition, 61(28), e202204563.PubMedCrossRef Huang, H., Zhao, J., Weng, B., Lai, F., Zhang, M., Hofkens, J., et al. (2022). Site-sensitive selective CO2 Photoreduction to CO over gold nanoparticles. Angewandte Chemie International Edition, 61(28), e202204563.PubMedCrossRef
go back to reference Jennings, T., & Strouse, G. (2007). Past, present, and future of gold nanoparticles. Bio-Applications of Nanoparticles, 620, 34–47.CrossRef Jennings, T., & Strouse, G. (2007). Past, present, and future of gold nanoparticles. Bio-Applications of Nanoparticles, 620, 34–47.CrossRef
go back to reference Jeong, E. H., Jung, G., Hong, C. A., & Lee, H. (2014). Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Archives of Pharmacal Research, 37, 53–59.PubMedCrossRef Jeong, E. H., Jung, G., Hong, C. A., & Lee, H. (2014). Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Archives of Pharmacal Research, 37, 53–59.PubMedCrossRef
go back to reference Kamaraj, C., Karthi, S., Reegan, A. D., Balasubramani, G., Ramkumar, G., Kalaivani, K., et al. (2022). Green synthesis of gold nanoparticles using Gracilaria crassa leaf extract and their ecotoxicological potential: Issues to be considered. Environmental Research, 213, 113711.PubMedCrossRef Kamaraj, C., Karthi, S., Reegan, A. D., Balasubramani, G., Ramkumar, G., Kalaivani, K., et al. (2022). Green synthesis of gold nanoparticles using Gracilaria crassa leaf extract and their ecotoxicological potential: Issues to be considered. Environmental Research, 213, 113711.PubMedCrossRef
go back to reference Kannan, R., Rahing, V., Cutler, C., Pandrapragada, R., Katti, K. K., Kattumuri, V., et al. (2006). Nanocompatible chemistry toward fabrication of target-specific gold nanoparticles. Journal of the American Chemical Society, 128(35), 11342–11343.PubMedCrossRef Kannan, R., Rahing, V., Cutler, C., Pandrapragada, R., Katti, K. K., Kattumuri, V., et al. (2006). Nanocompatible chemistry toward fabrication of target-specific gold nanoparticles. Journal of the American Chemical Society, 128(35), 11342–11343.PubMedCrossRef
go back to reference Karthikeyan, C., Sisubalan, N., Sridevi, M., Varaprasad, K., Basha, M. H. G., Shucai, W., & Sadiku, R. (2021). Biocidal chitosan-magnesium oxide nanoparticles via a green precipitation process. Journal of Hazardous Materials, 411, 124884.PubMedCrossRef Karthikeyan, C., Sisubalan, N., Sridevi, M., Varaprasad, K., Basha, M. H. G., Shucai, W., & Sadiku, R. (2021). Biocidal chitosan-magnesium oxide nanoparticles via a green precipitation process. Journal of Hazardous Materials, 411, 124884.PubMedCrossRef
go back to reference Khan, A. U., Yuan, Q., Wei, Y., Khan, G. M., Khan, Z. U. H., Khan, S., et al. (2016). Photocatalytic and antibacterial response of biosynthesized gold nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 162, 273–277.PubMedCrossRef Khan, A. U., Yuan, Q., Wei, Y., Khan, G. M., Khan, Z. U. H., Khan, S., et al. (2016). Photocatalytic and antibacterial response of biosynthesized gold nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 162, 273–277.PubMedCrossRef
go back to reference Khan, Y., Sadia, H., Ali Shah, S. Z., Khan, M. N., Shah, A. A., Ullah, N., et al. (2022). Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts, 12(11), 1386.CrossRef Khan, Y., Sadia, H., Ali Shah, S. Z., Khan, M. N., Shah, A. A., Ullah, N., et al. (2022). Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts, 12(11), 1386.CrossRef
go back to reference Kumar, V. G., Gokavarapu, S. D., Rajeswari, A., Dhas, T. S., Karthick, V., Kapadia, Z., et al. (2011). Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloids and Surfaces B: Biointerfaces, 87(1), 159–163.PubMedCrossRef Kumar, V. G., Gokavarapu, S. D., Rajeswari, A., Dhas, T. S., Karthick, V., Kapadia, Z., et al. (2011). Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloids and Surfaces B: Biointerfaces, 87(1), 159–163.PubMedCrossRef
go back to reference Kumar, V., Patil, V., Apte, A., Harale, N., Patil, P., & Kulkarni, S. (2015). Ultrasensitive gold nanostar–polyaniline composite for ammonia gas sensing. Langmuir, 31(48), 13247–13256.PubMedCrossRef Kumar, V., Patil, V., Apte, A., Harale, N., Patil, P., & Kulkarni, S. (2015). Ultrasensitive gold nanostar–polyaniline composite for ammonia gas sensing. Langmuir, 31(48), 13247–13256.PubMedCrossRef
go back to reference Lee, H., & Lee, D. G. (2018). Gold nanoparticles induce a reactive oxygen species-independent apoptotic pathway in Escherichia coli. Colloids and Surfaces B: Biointerfaces, 167, 1–7.PubMedCrossRef Lee, H., & Lee, D. G. (2018). Gold nanoparticles induce a reactive oxygen species-independent apoptotic pathway in Escherichia coli. Colloids and Surfaces B: Biointerfaces, 167, 1–7.PubMedCrossRef
go back to reference Lee, J. H., Cho, H. Y., Choi, H. K., Lee, J. Y., & Choi, J. W. (2018). Application of gold nanoparticle to plasmonic biosensors. International Journal of Molecular Sciences, 19(7), 2021.PubMedPubMedCentralCrossRef Lee, J. H., Cho, H. Y., Choi, H. K., Lee, J. Y., & Choi, J. W. (2018). Application of gold nanoparticle to plasmonic biosensors. International Journal of Molecular Sciences, 19(7), 2021.PubMedPubMedCentralCrossRef
go back to reference Lim, Z. Z. J., Li, J. E. J., Ng, C. T., Yung, L. Y. L., & Bay, B. H. (2011). Gold nanoparticles in cancer therapy. Acta Pharmacologica Sinica, 32(8), 983–990.PubMedPubMedCentralCrossRef Lim, Z. Z. J., Li, J. E. J., Ng, C. T., Yung, L. Y. L., & Bay, B. H. (2011). Gold nanoparticles in cancer therapy. Acta Pharmacologica Sinica, 32(8), 983–990.PubMedPubMedCentralCrossRef
go back to reference Lin, N., Verma, D., Saini, N., Arbi, R., Munir, M., Jovic, M., & Turak, A. (2021). Antiviral nanoparticles for sanitizing surfaces: A roadmap to self-sterilizing against COVID-19. Nano Today, 40, 101267.PubMedPubMedCentralCrossRef Lin, N., Verma, D., Saini, N., Arbi, R., Munir, M., Jovic, M., & Turak, A. (2021). Antiviral nanoparticles for sanitizing surfaces: A roadmap to self-sterilizing against COVID-19. Nano Today, 40, 101267.PubMedPubMedCentralCrossRef
go back to reference Liu, Z., Persson, S., & Sánchez-Rodríguez, C. (2015). At the border: The plasma membrane–cell wall continuum. Journal of Experimental Botany, 66(6), 1553–1563.PubMedCrossRef Liu, Z., Persson, S., & Sánchez-Rodríguez, C. (2015). At the border: The plasma membrane–cell wall continuum. Journal of Experimental Botany, 66(6), 1553–1563.PubMedCrossRef
go back to reference Liu, J., Wang, N., & Ma, L. (2020a). Recent advances in covalent organic frameworks for catalysis. Chemistry–An Asian Journal, 15(3), 338–351.PubMedCrossRef Liu, J., Wang, N., & Ma, L. (2020a). Recent advances in covalent organic frameworks for catalysis. Chemistry–An Asian Journal, 15(3), 338–351.PubMedCrossRef
go back to reference Liu, X., Zhang, Q., Knoll, W., Liedberg, B., & Wang, Y. (2020b). Rational design of functional peptide–gold hybrid nanomaterials for molecular interactions. Advanced Materials, 32(37), 2000866.CrossRef Liu, X., Zhang, Q., Knoll, W., Liedberg, B., & Wang, Y. (2020b). Rational design of functional peptide–gold hybrid nanomaterials for molecular interactions. Advanced Materials, 32(37), 2000866.CrossRef
go back to reference Mahalingam, S., Xu, Z., & Edirisinghe, M. (2015). Antibacterial activity and biosensing of PVA-lysozyme microbubbles formed by pressurized gyration. Langmuir, 31(36), 9771–9780.PubMedCrossRef Mahalingam, S., Xu, Z., & Edirisinghe, M. (2015). Antibacterial activity and biosensing of PVA-lysozyme microbubbles formed by pressurized gyration. Langmuir, 31(36), 9771–9780.PubMedCrossRef
go back to reference Marinoiu, A., Raceanu, M., Andrulevicius, M., Tamuleviciene, A., Tamulevicius, T., Nica, S., et al. (2020). Low-cost preparation method of well dispersed gold nanoparticles on reduced graphene oxide and electrocatalytic stability in PEM fuel cell. Arabian Journal of Chemistry, 13(1), 3585–3600.CrossRef Marinoiu, A., Raceanu, M., Andrulevicius, M., Tamuleviciene, A., Tamulevicius, T., Nica, S., et al. (2020). Low-cost preparation method of well dispersed gold nanoparticles on reduced graphene oxide and electrocatalytic stability in PEM fuel cell. Arabian Journal of Chemistry, 13(1), 3585–3600.CrossRef
go back to reference Marsden, J., & House, I. (2006). The chemistry of gold extraction. SME. Marsden, J., & House, I. (2006). The chemistry of gold extraction. SME.
go back to reference Medhi, R., Srinoi, P., Ngo, N., Tran, H. V., & Lee, T. R. (2020). Nanoparticle-based strategies to combat COVID-19. ACS Applied Nano Materials, 3(9), 8557–8580.PubMedCrossRef Medhi, R., Srinoi, P., Ngo, N., Tran, H. V., & Lee, T. R. (2020). Nanoparticle-based strategies to combat COVID-19. ACS Applied Nano Materials, 3(9), 8557–8580.PubMedCrossRef
go back to reference Melendez-Villanueva, M. A., Morán-Santibañez, K., Martínez-Sanmiguel, J. J., Rangel-López, R., Garza-Navarro, M. A., Rodríguez-Padilla, C., et al. (2019). Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract. Viruses, 11(12), 1111.PubMedPubMedCentralCrossRef Melendez-Villanueva, M. A., Morán-Santibañez, K., Martínez-Sanmiguel, J. J., Rangel-López, R., Garza-Navarro, M. A., Rodríguez-Padilla, C., et al. (2019). Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract. Viruses, 11(12), 1111.PubMedPubMedCentralCrossRef
go back to reference Mieszawska, A. J., Mulder, W. J., Fayad, Z. A., & Cormode, D. P. (2013). Multifunctional gold nanoparticles for diagnosis and therapy of disease. Molecular Pharmaceutics, 10(3), 831–847.PubMedPubMedCentralCrossRef Mieszawska, A. J., Mulder, W. J., Fayad, Z. A., & Cormode, D. P. (2013). Multifunctional gold nanoparticles for diagnosis and therapy of disease. Molecular Pharmaceutics, 10(3), 831–847.PubMedPubMedCentralCrossRef
go back to reference Monroe, M. K., Wang, H., Anderson, C. F., Jia, H., Flexner, C., & Cui, H. (2022). Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections. Journal of Controlled Release, 348, 1028–1049.PubMedCrossRef Monroe, M. K., Wang, H., Anderson, C. F., Jia, H., Flexner, C., & Cui, H. (2022). Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections. Journal of Controlled Release, 348, 1028–1049.PubMedCrossRef
go back to reference Mortezaee, K., Najafi, M., Samadian, H., Barabadi, H., Azarnezhad, A., & Ahmadi, A. (2019). Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chemico-Biological Interactions, 312, 108814.PubMedCrossRef Mortezaee, K., Najafi, M., Samadian, H., Barabadi, H., Azarnezhad, A., & Ahmadi, A. (2019). Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chemico-Biological Interactions, 312, 108814.PubMedCrossRef
go back to reference Murthy, S. K. (2007). Nanoparticles in modern medicine: State of the art and future challenges. International Journal of Nanomedicine, 2(2), 129–141.PubMedPubMedCentral Murthy, S. K. (2007). Nanoparticles in modern medicine: State of the art and future challenges. International Journal of Nanomedicine, 2(2), 129–141.PubMedPubMedCentral
go back to reference Naveena, B. E., & Prakash, S. (2013). Biological synthesis of gold nanoparticles using marine algae Gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian Journal of Pharmaceutical and Clinical Research, 6(2), 179–182. Naveena, B. E., & Prakash, S. (2013). Biological synthesis of gold nanoparticles using marine algae Gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian Journal of Pharmaceutical and Clinical Research, 6(2), 179–182.
go back to reference Nishanthi, R., Malathi, S., & Palani, P. (2019). Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Materials Science and Engineering: C, 96, 693–707.CrossRef Nishanthi, R., Malathi, S., & Palani, P. (2019). Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Materials Science and Engineering: C, 96, 693–707.CrossRef
go back to reference Nosrati, H., Seidi, F., Hosseinmirzaei, A., Mousazadeh, N., Mohammadi, A., Ghaffarlou, M., et al. (2022). Prodrug polymeric nanoconjugates encapsulating gold nanoparticles for enhanced X-Ray radiation therapy in breast cancer. Advanced Healthcare Materials, 11(3), 2102321.CrossRef Nosrati, H., Seidi, F., Hosseinmirzaei, A., Mousazadeh, N., Mohammadi, A., Ghaffarlou, M., et al. (2022). Prodrug polymeric nanoconjugates encapsulating gold nanoparticles for enhanced X-Ray radiation therapy in breast cancer. Advanced Healthcare Materials, 11(3), 2102321.CrossRef
go back to reference Oza, G., Pandey, S., Mewada, A., Kalita, G., Sharon, M., Phata, J., et al. (2012). Facile biosynthesis of gold nanoparticles exploiting optimum pH and temperature of fresh water algae Chlorella pyrenoidusa. Advances in Applied Science Research, 3(3), 1405–1412. Oza, G., Pandey, S., Mewada, A., Kalita, G., Sharon, M., Phata, J., et al. (2012). Facile biosynthesis of gold nanoparticles exploiting optimum pH and temperature of fresh water algae Chlorella pyrenoidusa. Advances in Applied Science Research, 3(3), 1405–1412.
go back to reference Paradowska, E., Studzińska, M., Jabłońska, A., Lozovski, V., Rusinchuk, N., Mukha, I., et al. (2021). Antiviral effect of nonfunctionalized gold nanoparticles against herpes simplex virus type-1 (HSV-1) and possible contribution of near-field interaction mechanism. Molecules, 26(19), 5960.PubMedPubMedCentralCrossRef Paradowska, E., Studzińska, M., Jabłońska, A., Lozovski, V., Rusinchuk, N., Mukha, I., et al. (2021). Antiviral effect of nonfunctionalized gold nanoparticles against herpes simplex virus type-1 (HSV-1) and possible contribution of near-field interaction mechanism. Molecules, 26(19), 5960.PubMedPubMedCentralCrossRef
go back to reference Paramasivam, G., Kayambu, N., Rabel, A. M., Sundramoorthy, A. K., & Sundaramurthy, A. (2017). Anisotropic noble metal nanoparticles: Synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics. Acta Biomaterialia, 49, 45–65.PubMedCrossRef Paramasivam, G., Kayambu, N., Rabel, A. M., Sundramoorthy, A. K., & Sundaramurthy, A. (2017). Anisotropic noble metal nanoparticles: Synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics. Acta Biomaterialia, 49, 45–65.PubMedCrossRef
go back to reference Parthiban, A., Sachithanandam, V., Sarangapany, S., Misra, R., Muthukrishnan, P., Jeyakumar, T. C., et al. (2023). Green synthesis of gold nanoparticles using quercetin biomolecule from mangrove plant, Ceriops tagal: Assessment of antiproliferative properties, cellular uptake and DFT studies. Journal of Molecular Structure, 1272, 134167.CrossRef Parthiban, A., Sachithanandam, V., Sarangapany, S., Misra, R., Muthukrishnan, P., Jeyakumar, T. C., et al. (2023). Green synthesis of gold nanoparticles using quercetin biomolecule from mangrove plant, Ceriops tagal: Assessment of antiproliferative properties, cellular uptake and DFT studies. Journal of Molecular Structure, 1272, 134167.CrossRef
go back to reference Patil, T. P., Vibhute, A. A., Patil, S. L., Dongale, T. D., & Tiwari, A. P. (2023). Green synthesis of gold nanoparticles via Capsicum annum fruit extract: Characterization, antiangiogenic, antioxidant and anti-inflammatory activities. Applied Surface Science Advances, 13, 100372.CrossRef Patil, T. P., Vibhute, A. A., Patil, S. L., Dongale, T. D., & Tiwari, A. P. (2023). Green synthesis of gold nanoparticles via Capsicum annum fruit extract: Characterization, antiangiogenic, antioxidant and anti-inflammatory activities. Applied Surface Science Advances, 13, 100372.CrossRef
go back to reference Pearce, A. K., Wilks, T. R., Arno, M. C., & O’Reilly, R. K. (2021). Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nature Reviews Chemistry, 5(1), 21–45.PubMedCrossRef Pearce, A. K., Wilks, T. R., Arno, M. C., & O’Reilly, R. K. (2021). Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nature Reviews Chemistry, 5(1), 21–45.PubMedCrossRef
go back to reference Pelgrift, R. Y., & Friedman, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 65(13–14), 1803–1815.PubMedCrossRef Pelgrift, R. Y., & Friedman, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 65(13–14), 1803–1815.PubMedCrossRef
go back to reference Pourali, P., Badiee, S. H., Manafi, S., Noorani, T., Rezaei, A., & Yahyaei, B. (2017). Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electronic Journal of Biotechnology, 29, 86–93.CrossRef Pourali, P., Badiee, S. H., Manafi, S., Noorani, T., Rezaei, A., & Yahyaei, B. (2017). Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electronic Journal of Biotechnology, 29, 86–93.CrossRef
go back to reference Pradeep, T. (2009). Noble metal nanoparticles for water purification: A critical review. Thin Solid Films, 517(24), 6441–6478.CrossRef Pradeep, T. (2009). Noble metal nanoparticles for water purification: A critical review. Thin Solid Films, 517(24), 6441–6478.CrossRef
go back to reference Rafiei, S., Rezatofighi, S. E., Ardakani, M. R., & Rastegarzadeh, S. (2015). Gold nanoparticles impair foot-and-mouth disease virus replication. IEEE Transactions on Nanobioscience, 15(1), 34–40.PubMedCrossRef Rafiei, S., Rezatofighi, S. E., Ardakani, M. R., & Rastegarzadeh, S. (2015). Gold nanoparticles impair foot-and-mouth disease virus replication. IEEE Transactions on Nanobioscience, 15(1), 34–40.PubMedCrossRef
go back to reference Rajan, A., Vilas, V., & Philip, D. (2015). Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. Journal of Molecular Liquids, 212, 331–339.CrossRef Rajan, A., Vilas, V., & Philip, D. (2015). Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. Journal of Molecular Liquids, 212, 331–339.CrossRef
go back to reference Reina, G., Peng, S., Jacquemin, L., Andrade, A. F., & Bianco, A. (2020). Hard nanomaterials in time of viral pandemics. ACS Nano, 14(8), 9364–9388.PubMedCrossRef Reina, G., Peng, S., Jacquemin, L., Andrade, A. F., & Bianco, A. (2020). Hard nanomaterials in time of viral pandemics. ACS Nano, 14(8), 9364–9388.PubMedCrossRef
go back to reference Rickard, D. (2015). Pyrite: A natural history of fool’s gold. Oxford University Press.CrossRef Rickard, D. (2015). Pyrite: A natural history of fool’s gold. Oxford University Press.CrossRef
go back to reference Rosli, N. A., Teow, Y. H., & Mahmoudi, E. (2021). Current approaches for the exploration of antimicrobial activities of nanoparticles. Science and Technology of Advanced Materials, 22(1), 885–907.PubMedPubMedCentralCrossRef Rosli, N. A., Teow, Y. H., & Mahmoudi, E. (2021). Current approaches for the exploration of antimicrobial activities of nanoparticles. Science and Technology of Advanced Materials, 22(1), 885–907.PubMedPubMedCentralCrossRef
go back to reference Rowe, L. A., Degtyareva, N., & Doetsch, P. W. (2008). DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radical Biology and Medicine, 45(8), 1167–1177.PubMedCrossRef Rowe, L. A., Degtyareva, N., & Doetsch, P. W. (2008). DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radical Biology and Medicine, 45(8), 1167–1177.PubMedCrossRef
go back to reference Shah, M., Badwaik, V., Kherde, Y., Waghwani, H. K., Modi, T., Aguilar, Z. P., et al. (2014). Gold nanoparticles: Various methods of synthesis and antibacterial applications. Frontiers in Bioscience, 19(8), 1320.CrossRef Shah, M., Badwaik, V., Kherde, Y., Waghwani, H. K., Modi, T., Aguilar, Z. P., et al. (2014). Gold nanoparticles: Various methods of synthesis and antibacterial applications. Frontiers in Bioscience, 19(8), 1320.CrossRef
go back to reference Sharma, N., Pinnaka, A. K., Raje, M., Fnu, A., Bhattacharyya, M. S., & Choudhury, A. R. (2012). Exploitation of marine bacteria for production of gold nanoparticles. Microbial Cell Factories, 11, 1–6.CrossRef Sharma, N., Pinnaka, A. K., Raje, M., Fnu, A., Bhattacharyya, M. S., & Choudhury, A. R. (2012). Exploitation of marine bacteria for production of gold nanoparticles. Microbial Cell Factories, 11, 1–6.CrossRef
go back to reference Sharma, B., Purkayastha, D. D., Hazra, S., Gogoi, L., Bhattacharjee, C. R., Ghosh, N. N., & Rout, J. (2014a). Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa. Materials Letters, 116, 94–97.CrossRef Sharma, B., Purkayastha, D. D., Hazra, S., Gogoi, L., Bhattacharjee, C. R., Ghosh, N. N., & Rout, J. (2014a). Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa. Materials Letters, 116, 94–97.CrossRef
go back to reference Sharma, B., Purkayastha, D. D., Hazra, S., Thajamanbi, M., Bhattacharjee, C. R., Ghosh, N. N., & Rout, J. (2014b). Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C. Ag. and antioxidant activity of biomatrix loaded nanoparticles. Bioprocess and Biosystems Engineering, 37, 2559–2565.PubMedCrossRef Sharma, B., Purkayastha, D. D., Hazra, S., Thajamanbi, M., Bhattacharjee, C. R., Ghosh, N. N., & Rout, J. (2014b). Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C. Ag. and antioxidant activity of biomatrix loaded nanoparticles. Bioprocess and Biosystems Engineering, 37, 2559–2565.PubMedCrossRef
go back to reference Sharmin, S., Rahaman, M. M., Sarkar, C., Atolani, O., Islam, M. T., & Adeyemi, O. S. (2021). Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon, 7(3), e06456.PubMedPubMedCentralCrossRef Sharmin, S., Rahaman, M. M., Sarkar, C., Atolani, O., Islam, M. T., & Adeyemi, O. S. (2021). Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon, 7(3), e06456.PubMedPubMedCentralCrossRef
go back to reference Sibuyi, N. R. S., Moabelo, K. L., Fadaka, A. O., Meyer, S., Onani, M. O., Madiehe, A. M., & Meyer, M. (2021). Multifunctional gold nanoparticles for improved diagnostic and therapeutic applications: A review. Nanoscale Research Letters, 16, 1–27.CrossRef Sibuyi, N. R. S., Moabelo, K. L., Fadaka, A. O., Meyer, S., Onani, M. O., Madiehe, A. M., & Meyer, M. (2021). Multifunctional gold nanoparticles for improved diagnostic and therapeutic applications: A review. Nanoscale Research Letters, 16, 1–27.CrossRef
go back to reference Singh, P. K., & Kundu, S. (2014). Biosynthesis of gold nanoparticles using bacteria. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84, 331–336.CrossRef Singh, P. K., & Kundu, S. (2014). Biosynthesis of gold nanoparticles using bacteria. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84, 331–336.CrossRef
go back to reference Singh, N., Manshian, B., Jenkins, G. J., Griffiths, S. M., Williams, P. M., Maffeis, T. G., et al. (2009). NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials, 30(23–24), 3891–3914.PubMedCrossRef Singh, N., Manshian, B., Jenkins, G. J., Griffiths, S. M., Williams, P. M., Maffeis, T. G., et al. (2009). NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials, 30(23–24), 3891–3914.PubMedCrossRef
go back to reference Singh, P., Pandit, S., Mokkapati, V. R. S. S., Garg, A., Ravikumar, V., & Mijakovic, I. (2018). Gold nanoparticles in diagnostics and therapeutics for human cancer. International Journal of Molecular Sciences, 19(7), 1979.PubMedPubMedCentralCrossRef Singh, P., Pandit, S., Mokkapati, V. R. S. S., Garg, A., Ravikumar, V., & Mijakovic, I. (2018). Gold nanoparticles in diagnostics and therapeutics for human cancer. International Journal of Molecular Sciences, 19(7), 1979.PubMedPubMedCentralCrossRef
go back to reference Sisubalan, N., Ramkumar, V. S., Pugazhendhi, A., Karthikeyan, C., Indira, K., Gopinath, K., Hameed, A. S., & Basha, M. H. (2018). ROS-mediated cytotoxic activity of ZnO and CeO2 nanoparticles synthesized using the Rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines. Environmental Science and Pollution Research, 25, 10482–10492.PubMedCrossRef Sisubalan, N., Ramkumar, V. S., Pugazhendhi, A., Karthikeyan, C., Indira, K., Gopinath, K., Hameed, A. S., & Basha, M. H. (2018). ROS-mediated cytotoxic activity of ZnO and CeO2 nanoparticles synthesized using the Rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines. Environmental Science and Pollution Research, 25, 10482–10492.PubMedCrossRef
go back to reference Siti, R. M., Khairunisak, A. R., Aziz, A. A., & Noordin, R. (2013). Green synthesis of 10 nm gold nanoparticles via seeded-growth method and its conjugation properties on lateral flow immunoassay. Advanced Materials Research, 686, 8–12.CrossRef Siti, R. M., Khairunisak, A. R., Aziz, A. A., & Noordin, R. (2013). Green synthesis of 10 nm gold nanoparticles via seeded-growth method and its conjugation properties on lateral flow immunoassay. Advanced Materials Research, 686, 8–12.CrossRef
go back to reference Sivakami, A., Sarankumar, R., & Vinodha, S. (2021). Introduction to nanobiotechnology: Novel and smart applications (pp. 1–22). Perspectives and Promotion. Sivakami, A., Sarankumar, R., & Vinodha, S. (2021). Introduction to nanobiotechnology: Novel and smart applications (pp. 1–22). Perspectives and Promotion.
go back to reference Skladanowski, M., Wypij, M., Laskowski, D., Golińska, P., Dahm, H., & Rai, M. (2017). Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens. Journal of Cluster Science, 28, 59–79.CrossRef Skladanowski, M., Wypij, M., Laskowski, D., Golińska, P., Dahm, H., & Rai, M. (2017). Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens. Journal of Cluster Science, 28, 59–79.CrossRef
go back to reference Soltani Nejad, M., Samandari Najafabadi, N., Aghighi, S., Pakina, E., & Zargar, M. (2022). Evaluation of Phoma sp. biomass as an endophytic fungus for synthesis of extracellular gold nanoparticles with antibacterial and antifungal properties. Molecules, 27(4), 1181.PubMedPubMedCentralCrossRef Soltani Nejad, M., Samandari Najafabadi, N., Aghighi, S., Pakina, E., & Zargar, M. (2022). Evaluation of Phoma sp. biomass as an endophytic fungus for synthesis of extracellular gold nanoparticles with antibacterial and antifungal properties. Molecules, 27(4), 1181.PubMedPubMedCentralCrossRef
go back to reference Song, J., Huang, P., Duan, H., & Chen, X. (2015). Plasmonic vesicles of amphiphilic nanocrystals: Optically active multifunctional platform for cancer diagnosis and therapy. Accounts of Chemical Research, 48(9), 2506–2515.PubMedPubMedCentralCrossRef Song, J., Huang, P., Duan, H., & Chen, X. (2015). Plasmonic vesicles of amphiphilic nanocrystals: Optically active multifunctional platform for cancer diagnosis and therapy. Accounts of Chemical Research, 48(9), 2506–2515.PubMedPubMedCentralCrossRef
go back to reference Sperling, R. A., & Parak, W. J. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1915), 1333–1383.CrossRef Sperling, R. A., & Parak, W. J. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1915), 1333–1383.CrossRef
go back to reference Steinmetz, N. F., & Manchester, M. (2011). Viral nanoparticles: Tools for material science and biomedicine. Pan Stanford Publishing. Steinmetz, N. F., & Manchester, M. (2011). Viral nanoparticles: Tools for material science and biomedicine. Pan Stanford Publishing.
go back to reference Subbulakshmi, A., Durgadevi, S., Anitha, S., Govarthanan, M., Biruntha, M., Rameshthangam, P., & Kumar, P. (2023). Biogenic gold nanoparticles from Gelidiella acerosa: Bactericidal and photocatalytic degradation of two commercial dyes. Applied Nanoscience, 13(6), 4033–4042.CrossRef Subbulakshmi, A., Durgadevi, S., Anitha, S., Govarthanan, M., Biruntha, M., Rameshthangam, P., & Kumar, P. (2023). Biogenic gold nanoparticles from Gelidiella acerosa: Bactericidal and photocatalytic degradation of two commercial dyes. Applied Nanoscience, 13(6), 4033–4042.CrossRef
go back to reference Suganya, K. U., Govindaraju, K., Kumar, V. G., Dhas, T. S., Karthick, V., Singaravelu, G., & Elanchezhiyan, M. (2015). Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Materials Science and Engineering: C, 47, 351–356.PubMedCrossRef Suganya, K. U., Govindaraju, K., Kumar, V. G., Dhas, T. S., Karthick, V., Singaravelu, G., & Elanchezhiyan, M. (2015). Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Materials Science and Engineering: C, 47, 351–356.PubMedCrossRef
go back to reference Sulaiman, G. M., Waheeb, H. M., Jabir, M. S., Khazaal, S. H., Dewir, Y. H., & Naidoo, Y. (2020). Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Scientific Reports, 10(1), 9362.PubMedPubMedCentralCrossRef Sulaiman, G. M., Waheeb, H. M., Jabir, M. S., Khazaal, S. H., Dewir, Y. H., & Naidoo, Y. (2020). Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Scientific Reports, 10(1), 9362.PubMedPubMedCentralCrossRef
go back to reference Sun, Y., & Xia, Y. (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science, 298(5601), 2176–2179.PubMedCrossRef Sun, Y., & Xia, Y. (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science, 298(5601), 2176–2179.PubMedCrossRef
go back to reference Suriyakala, G., Sathiyaraj, S., Babujanarthanam, R., Alarjani, K. M., Hussein, D. S., Rasheed, R. A., & Kanimozhi, K. (2022). Green synthesis of gold nanoparticles using Jatropha integerrima Jacq. flower extract and their antibacterial activity. Journal of King Saud University-Science, 34(3), 101830.CrossRef Suriyakala, G., Sathiyaraj, S., Babujanarthanam, R., Alarjani, K. M., Hussein, D. S., Rasheed, R. A., & Kanimozhi, K. (2022). Green synthesis of gold nanoparticles using Jatropha integerrima Jacq. flower extract and their antibacterial activity. Journal of King Saud University-Science, 34(3), 101830.CrossRef
go back to reference Tatur, S., Maccarini, M., Barker, R., Nelson, A., & Fragneto, G. (2013). Effect of functionalized gold nanoparticles on floating lipid bilayers. Langmuir, 29(22), 6606–6614.PubMedCrossRef Tatur, S., Maccarini, M., Barker, R., Nelson, A., & Fragneto, G. (2013). Effect of functionalized gold nanoparticles on floating lipid bilayers. Langmuir, 29(22), 6606–6614.PubMedCrossRef
go back to reference Thakur, S., Thakur, S., & Kumar, R. (2018). Bio-nanotechnology and its role in agriculture and food industry. Journal of Molecular and Genetic Medicine, 12(324), 1747–0862. Thakur, S., Thakur, S., & Kumar, R. (2018). Bio-nanotechnology and its role in agriculture and food industry. Journal of Molecular and Genetic Medicine, 12(324), 1747–0862.
go back to reference Thompson, C. I., Barclay, W. S., & Zambon, M. C. (2004). Changes in in vitro susceptibility of influenza A H3N2 viruses to a neuraminidase inhibitor drug during evolution in the human host. Journal of Antimicrobial Chemotherapy, 53(5), 759–765.PubMedCrossRef Thompson, C. I., Barclay, W. S., & Zambon, M. C. (2004). Changes in in vitro susceptibility of influenza A H3N2 viruses to a neuraminidase inhibitor drug during evolution in the human host. Journal of Antimicrobial Chemotherapy, 53(5), 759–765.PubMedCrossRef
go back to reference Tonelli, F. M. P., Silva, C. S., Delgado, V. M. S., & Tonelli, F. C. P. (2023). Algae-based green AgNPs, AuNPs, and FeNPs as potential nanoremediators. Green Processing and Synthesis, 12(1), 20230008.CrossRef Tonelli, F. M. P., Silva, C. S., Delgado, V. M. S., & Tonelli, F. C. P. (2023). Algae-based green AgNPs, AuNPs, and FeNPs as potential nanoremediators. Green Processing and Synthesis, 12(1), 20230008.CrossRef
go back to reference Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55–75.CrossRef Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55–75.CrossRef
go back to reference Uboldi, C., Bonacchi, D., Lorenzi, G., Hermanns, M., Pohl, C., Baldi, G., et al. (2009). Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441. Particle and Fibre Toxicology, 6(1), 1–12.CrossRef Uboldi, C., Bonacchi, D., Lorenzi, G., Hermanns, M., Pohl, C., Baldi, G., et al. (2009). Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441. Particle and Fibre Toxicology, 6(1), 1–12.CrossRef
go back to reference Van Doren, E. A., De Temmerman, P. J. R., Francisco, M. A. D., & Mast, J. (2011). Determination of the volume-specific surface area by using transmission electron tomography for characterization and definition of nanomaterials. Journal of Nanobiotechnology, 9(1), 1–8. Van Doren, E. A., De Temmerman, P. J. R., Francisco, M. A. D., & Mast, J. (2011). Determination of the volume-specific surface area by using transmission electron tomography for characterization and definition of nanomaterials. Journal of Nanobiotechnology, 9(1), 1–8.
go back to reference Vodyashkin, A. A., Rizk, M. G. H., Kezimana, P., Kirichuk, A. A., & Stanishevskiy, Y. M. (2021). Application of gold nanoparticle-based materials in cancer therapy and diagnostics. ChemEngineering, 5(4), 69.CrossRef Vodyashkin, A. A., Rizk, M. G. H., Kezimana, P., Kirichuk, A. A., & Stanishevskiy, Y. M. (2021). Application of gold nanoparticle-based materials in cancer therapy and diagnostics. ChemEngineering, 5(4), 69.CrossRef
go back to reference Vonnemann, J., Sieben, C., Wolff, C., Ludwig, K., Böttcher, C., Herrmann, A., & Haag, R. (2014). Virus inhibition induced by polyvalent nanoparticles of different sizes. Nanoscale, 6(4), 2353–2360.PubMedCrossRef Vonnemann, J., Sieben, C., Wolff, C., Ludwig, K., Böttcher, C., Herrmann, A., & Haag, R. (2014). Virus inhibition induced by polyvalent nanoparticles of different sizes. Nanoscale, 6(4), 2353–2360.PubMedCrossRef
go back to reference Waheed, S., Li, Z., Zhang, F., Chiarini, A., Armato, U., & Wu, J. (2022). Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. Journal of Nanobiotechnology, 20(1), 395.PubMedPubMedCentralCrossRef Waheed, S., Li, Z., Zhang, F., Chiarini, A., Armato, U., & Wu, J. (2022). Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. Journal of Nanobiotechnology, 20(1), 395.PubMedPubMedCentralCrossRef
go back to reference Yah, C. S. (2013). The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomedical Research, 24(3), 400–413. Yah, C. S. (2013). The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomedical Research, 24(3), 400–413.
go back to reference Yang, W., Liang, H., Ma, S., Wang, D., & Huang, J. (2019). Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment. Sustainable Materials and Technologies, 22, e00109.CrossRef Yang, W., Liang, H., Ma, S., Wang, D., & Huang, J. (2019). Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment. Sustainable Materials and Technologies, 22, e00109.CrossRef
go back to reference Yasamineh, S., Kalajahi, H. G., Yasamineh, P., Yazdani, Y., Gholizadeh, O., Tabatabaie, R., et al. (2022). An overview on nanoparticle-based strategies to fight viral infections with a focus on COVID-19. Journal of Nanobiotechnology, 20(1), 1–26.CrossRef Yasamineh, S., Kalajahi, H. G., Yasamineh, P., Yazdani, Y., Gholizadeh, O., Tabatabaie, R., et al. (2022). An overview on nanoparticle-based strategies to fight viral infections with a focus on COVID-19. Journal of Nanobiotechnology, 20(1), 1–26.CrossRef
go back to reference Ye, J., Zhu, B., Cheng, B., Jiang, C., Wageh, S., Al-Ghamdi, A. A., & Yu, J. (2022). Synergy between platinum and gold nanoparticles in oxygen activation for enhanced room-temperature formaldehyde oxidation. Advanced Functional Materials, 32(15), 2110423.CrossRef Ye, J., Zhu, B., Cheng, B., Jiang, C., Wageh, S., Al-Ghamdi, A. A., & Yu, J. (2022). Synergy between platinum and gold nanoparticles in oxygen activation for enhanced room-temperature formaldehyde oxidation. Advanced Functional Materials, 32(15), 2110423.CrossRef
go back to reference Zhang, L., Gu, F. X., Chan, J. M., Wang, A. Z., Langer, R. S., & Farokhzad, O. C. (2008). Nanoparticles in medicine: Therapeutic applications and developments. Clinical Pharmacology & Therapeutics, 83(5), 761–769.CrossRef Zhang, L., Gu, F. X., Chan, J. M., Wang, A. Z., Langer, R. S., & Farokhzad, O. C. (2008). Nanoparticles in medicine: Therapeutic applications and developments. Clinical Pharmacology & Therapeutics, 83(5), 761–769.CrossRef
go back to reference Zhang, X. D., Wu, D., Shen, X., Liu, P. X., Yang, N., Zhao, B., et al. (2011). Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. International Journal of Nanomedicine, 6, 2071–2081.PubMedPubMedCentralCrossRef Zhang, X. D., Wu, D., Shen, X., Liu, P. X., Yang, N., Zhao, B., et al. (2011). Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. International Journal of Nanomedicine, 6, 2071–2081.PubMedPubMedCentralCrossRef
Metadata
Title
Gold Nanoparticles as Antibacterial and Antiviral Agents: Biomedical Applications and Theranostic Potential
Authors
Muniraj Gnanaraj
Natarajan Sisubalan
T. Jebastin
Arumugam Vijayan
T. Muneeshwaran
R. Manikandan
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50093-0_2

Premium Partners