Skip to main content
Top

2010 | OriginalPaper | Chapter

8. Governing Equations of Blood Flow and Respective Numerical Methods

Authors : Yunlong Huo, Ghassan S. Kassab

Published in: Computational Cardiovascular Mechanics

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Coronary heart disease which is a major cause of heart failure in the United States has a focal nature which is due to local hemodynamic disturbances. The computational fluid dynamics (CFD) method has become a powerful approach to understand blood flows in the cardiovascular system and its local features. This chapter outlines the field equations for blood flow and some of the approaches for numerical solutions. Specifically, the text focuses on the finite difference (FD) and finite element (FE) methods with applications to blood flow dynamics in coronary arteries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fung YC. Biomechanics: circulation, 4th Ed. New York: Springer-Verlag, 1996. Fung YC. Biomechanics: circulation, 4th Ed. New York: Springer-Verlag, 1996.
2.
go back to reference Perktold K, Resch M, Florian H. Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. ASME J Biomech Eng. 1991;113:464–75.CrossRef Perktold K, Resch M, Florian H. Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. ASME J Biomech Eng. 1991;113:464–75.CrossRef
3.
go back to reference Buchanan JR Jr, Kleinstreuer C, Truskey GA, Lei M. Relation between non-uniform hemodynamics and sites of altered permeability and lesion growth at the rabbit aorto-celiac junction. Atherosclerosis. 1999;143:27–40.CrossRef Buchanan JR Jr, Kleinstreuer C, Truskey GA, Lei M. Relation between non-uniform hemodynamics and sites of altered permeability and lesion growth at the rabbit aorto-celiac junction. Atherosclerosis. 1999;143:27–40.CrossRef
4.
go back to reference Kleinstreuer C, Hyun S, Buchanan JR Jr, Longest PW, Archie JP Jr, Truskey GA. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit Rev Biomed Eng. 2001;29:1–64.CrossRef Kleinstreuer C, Hyun S, Buchanan JR Jr, Longest PW, Archie JP Jr, Truskey GA. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit Rev Biomed Eng. 2001;29:1–64.CrossRef
6.
go back to reference He X, Ku DN. Pulsatile flow in the human left coronary artery bifurcation: average conditions. ASME J Biomech Eng. 1996;118:74–82.CrossRef He X, Ku DN. Pulsatile flow in the human left coronary artery bifurcation: average conditions. ASME J Biomech Eng. 1996;118:74–82.CrossRef
8.
go back to reference Ramaswamy SD, Vigmostad SC, Wahle A, Lia YG., Olszewski M.E, Braddy KC, Brennan TMH., Rossen JD, Sonka M., Chandran KB. Fluid dynamics in a human left anterior descending coronary artery with arterial motion. Ann Biomed Eng. 2004;32:1628–41.CrossRef Ramaswamy SD, Vigmostad SC, Wahle A, Lia YG., Olszewski M.E, Braddy KC, Brennan TMH., Rossen JD, Sonka M., Chandran KB. Fluid dynamics in a human left anterior descending coronary artery with arterial motion. Ann Biomed Eng. 2004;32:1628–41.CrossRef
9.
go back to reference Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. New York: John Willey & Sons, 1962. Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. New York: John Willey & Sons, 1962.
10.
go back to reference Panton RL. Incompressible flow. New York: John Willey & Sons, 1984.MATH Panton RL. Incompressible flow. New York: John Willey & Sons, 1984.MATH
11.
go back to reference Acheson DJ. Elementary Fluid Dynamics. Oxford applied mathematics and computing science series. 1990. Acheson DJ. Elementary Fluid Dynamics. Oxford applied mathematics and computing science series. 1990.
12.
go back to reference Li BQ. Discontinuous finite elements in fluid dynamics and heat transfer. London: Springer-Verlag, 2006.MATH Li BQ. Discontinuous finite elements in fluid dynamics and heat transfer. London: Springer-Verlag, 2006.MATH
13.
go back to reference Nichols WW. O’Rourke MF. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles, 4th Ed. New York: Oxford University Press, 1998. Nichols WW. O’Rourke MF. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles, 4th Ed. New York: Oxford University Press, 1998.
14.
go back to reference Patankar SV. Numerical heat transfer and fluid flow, Hemisphere, 1980. Patankar SV. Numerical heat transfer and fluid flow, Hemisphere, 1980.
15.
go back to reference Fletcher CAJ. Computational techniques for fluid dynamics, Volume I. Berlin: Springer-Verlag, 1991a.CrossRef Fletcher CAJ. Computational techniques for fluid dynamics, Volume I. Berlin: Springer-Verlag, 1991a.CrossRef
16.
go back to reference Fletcher CAJ. Computational techniques for fluid dynamics, Volume II. Berlin: Springer-Verlag, 1991b.CrossRef Fletcher CAJ. Computational techniques for fluid dynamics, Volume II. Berlin: Springer-Verlag, 1991b.CrossRef
17.
go back to reference Ferziger JH, Peric M. Computational methods for fluid dynamics. New York: Springer-Verlag, 2002.MATHCrossRef Ferziger JH, Peric M. Computational methods for fluid dynamics. New York: Springer-Verlag, 2002.MATHCrossRef
18.
go back to reference Huo Y, Kassab GS. A hybrid one-dimensional/Womersley model of pulsatile blood flow in the entire coronary arterial tree. Am J Physiol Heart Circ Physiol. 2007;292:H2623–33.CrossRef Huo Y, Kassab GS. A hybrid one-dimensional/Womersley model of pulsatile blood flow in the entire coronary arterial tree. Am J Physiol Heart Circ Physiol. 2007;292:H2623–33.CrossRef
19.
go back to reference Guo X, Kassab GS. Distribution of stress and strain along the porcine aorta and coronary arterial tree. Am J Physiol Heart Circ Physiol. 2004;286:H2361–8.CrossRef Guo X, Kassab GS. Distribution of stress and strain along the porcine aorta and coronary arterial tree. Am J Physiol Heart Circ Physiol. 2004;286:H2361–8.CrossRef
20.
go back to reference Huo Y, Kassab GS. Pulsatile blood flow in the entire coronary arterial tree: theory and experiment. Am J Physiol Heart Circ Physiol. 2006;291:H1074–87.CrossRef Huo Y, Kassab GS. Pulsatile blood flow in the entire coronary arterial tree: theory and experiment. Am J Physiol Heart Circ Physiol. 2006;291:H1074–87.CrossRef
21.
go back to reference Huo Y, Kassab GS. A scaling law of vascular volume. Biophys J. 2009b;96:347–53.CrossRef Huo Y, Kassab GS. A scaling law of vascular volume. Biophys J. 2009b;96:347–53.CrossRef
22.
go back to reference Kassab GS, Rider CA, Tang NJ, Fung YC. Morphometry of pig coronary arterial trees. Am J Physiol Heart Circ Physiol. 1993;265:H350–65. Kassab GS, Rider CA, Tang NJ, Fung YC. Morphometry of pig coronary arterial trees. Am J Physiol Heart Circ Physiol. 1993;265:H350–65.
23.
go back to reference Huo Y, Wischgoll T, Kassab GS. Flow patterns in three-dimensional porcine epicardial coronary arterial tree. Am J Physiol Heart Circ Physiol. 2007;293:H2959–70.CrossRef Huo Y, Wischgoll T, Kassab GS. Flow patterns in three-dimensional porcine epicardial coronary arterial tree. Am J Physiol Heart Circ Physiol. 2007;293:H2959–70.CrossRef
24.
go back to reference Huo Y, Kassab GS. The scaling of blood flow resistance: from a single vessel to the entire distal tree. Biophys J. 2009a;96:339–46.CrossRef Huo Y, Kassab GS. The scaling of blood flow resistance: from a single vessel to the entire distal tree. Biophys J. 2009a;96:339–46.CrossRef
Metadata
Title
Governing Equations of Blood Flow and Respective Numerical Methods
Authors
Yunlong Huo
Ghassan S. Kassab
Copyright Year
2010
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4419-0730-1_8