Skip to main content
Top

2019 | OriginalPaper | Chapter

9. Gradient-Based Attribution Methods

Authors : Marco Ancona, Enea Ceolini, Cengiz Öztireli, Markus Gross

Published in: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The problem of explaining complex machine learning models, including Deep Neural Networks, has gained increasing attention over the last few years. While several methods have been proposed to explain network predictions, the definition itself of explanation is still debated. Moreover, only a few attempts to compare explanation methods from a theoretical perspective has been done. In this chapter, we discuss the theoretical properties of several attribution methods and show how they share the same idea of using the gradient information as a descriptive factor for the functioning of a model. Finally, we discuss the strengths and limitations of these methods and compare them with available alternatives.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
DeepLIFT has been designed specifically for feed-forward neural networks and therefore assumes no multiplicative interactions. The gradient-based formulation generalizes the method to other architectures but does not guarantee meaningful results outside the scope DeepLIFT was designed for.
 
2
In fact, \(\epsilon \)-LRP and DeepLIFT (Rescale) are not implementation invariant so the result might change depending on the actual implementation of the max function in the network. For example, this can be implemented as a primitive operation (max-pooling) or, for positive numbers, it can be implicitly implemented by a two-layer network with three hidden units: \(y = 0.5 \cdot (ReLU(x_1-x_2) + ReLU(x_2-x_1) + ReLU(x_1+x_2)\). In both cases, our reference implementation [3] produces the same attributions for all gradient-based methods, including \(\epsilon \)-LRP and DeepLIFT (Rescale).
 
Literature
2.
go back to reference Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: Advances in Neural Information Processing Systems, pp. 9524–9535 (2018) Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: Advances in Neural Information Processing Systems, pp. 9524–9535 (2018)
3.
go back to reference Ancona, M., Ceolini, E., Oztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks. In: 6th International Conference on Learning Representations (ICLR) (2018) Ancona, M., Ceolini, E., Oztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks. In: 6th International Conference on Learning Representations (ICLR) (2018)
4.
go back to reference Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)CrossRef Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)CrossRef
5.
go back to reference Balduzzi, D., Frean, M., Leary, L., Lewis, J.P., Ma, K.W.D., McWilliams, B.: The shattered gradients problem: if resnets are the answer, then what is the question? In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, vol. 70, pp. 342–350 (2017). JMLR.org Balduzzi, D., Frean, M., Leary, L., Lewis, J.P., Ma, K.W.D., McWilliams, B.: The shattered gradients problem: if resnets are the answer, then what is the question? In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, vol. 70, pp. 342–350 (2017). JMLR.​org
7.
go back to reference Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3429–3437 (2017) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3429–3437 (2017)
8.
go back to reference Ghorbani, A., Abid, A., Zou, J.: Interpretation of neural networks is fragile. In: AAAI 2019 (2019)CrossRef Ghorbani, A., Abid, A., Zou, J.: Interpretation of neural networks is fragile. In: AAAI 2019 (2019)CrossRef
9.
go back to reference Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Learning Representations (ICLR) (2015) Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Learning Representations (ICLR) (2015)
10.
go back to reference Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-making and a “right to explanation”. In: ICML Workshop on Human Interpretability in Machine Learning (WHI) (2016) Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-making and a “right to explanation”. In: ICML Workshop on Human Interpretability in Machine Learning (WHI) (2016)
11.
go back to reference Kindermans, P., Schütt, K., Müller, K., Dähne, S.: Investigating the influence of noise and distractors on the interpretation of neural networks. In: NIPS Workshop on Interpretable Machine Learning in Complex Systems (2016) Kindermans, P., Schütt, K., Müller, K., Dähne, S.: Investigating the influence of noise and distractors on the interpretation of neural networks. In: NIPS Workshop on Interpretable Machine Learning in Complex Systems (2016)
12.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of NIPS, pp. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of NIPS, pp. 1097–1105 (2012)
13.
go back to reference Kutner, M.H., Nachtsheim, C., Neter, J.: Applied Linear Regression Models. McGraw-Hill/Irwin, New York (2004) Kutner, M.H., Nachtsheim, C., Neter, J.: Applied Linear Regression Models. McGraw-Hill/Irwin, New York (2004)
14.
go back to reference LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef
15.
go back to reference Lipton, Z.C.: The mythos of model interpretability. In: ICML Workshop on Human Interpretability of Machine Learning (2016) Lipton, Z.C.: The mythos of model interpretability. In: ICML Workshop on Human Interpretability of Machine Learning (2016)
16.
go back to reference Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 4765–4774 (2017) Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 4765–4774 (2017)
17.
go back to reference Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)CrossRef Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)CrossRef
18.
go back to reference Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)CrossRef Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)CrossRef
19.
go back to reference Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digital Signal Process. 73, 1–15 (2018)MathSciNetCrossRef Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digital Signal Process. 73, 1–15 (2018)MathSciNetCrossRef
20.
go back to reference Nie, W., Zhang, Y., Patel, A.: A theoretical explanation for perplexing behaviors of back propagation-based visualizations. In: ICML 2018 (2018) Nie, W., Zhang, Y., Patel, A.: A theoretical explanation for perplexing behaviors of back propagation-based visualizations. In: ICML 2018 (2018)
21.
go back to reference Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017) Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017)
22.
go back to reference Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, ACM, New York, NY, USA, pp. 1135–1144 (2016) Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, ACM, New York, NY, USA, pp. 1135–1144 (2016)
23.
go back to reference Roth, A.E.: The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge University Press, Cambridge (1988)CrossRef Roth, A.E.: The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge University Press, Cambridge (1988)CrossRef
24.
go back to reference Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Networks Learn. Syst. 28(11), 2660–2673 (2017)MathSciNetCrossRef Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Networks Learn. Syst. 28(11), 2660–2673 (2017)MathSciNetCrossRef
25.
go back to reference Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017) Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
26.
27.
go back to reference Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, PMLR, International Convention Centre, Sydney, Australia, vol. 70, pp. 3145–3153, 06–11 August 2017 Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, PMLR, International Convention Centre, Sydney, Australia, vol. 70, pp. 3145–3153, 06–11 August 2017
28.
go back to reference Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not just a black box: learning important features through propagating activation differences. arXiv preprint arXiv:1605.01713 (2016) Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not just a black box: learning important features through propagating activation differences. arXiv preprint arXiv:​1605.​01713 (2016)
29.
go back to reference Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)CrossRef Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)CrossRef
30.
go back to reference Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: ICLR Workshop (2014) Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: ICLR Workshop (2014)
31.
go back to reference Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: removing noise by adding noise. In: ICML Workshop on Visualization for Deep Learning (2017) Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: removing noise by adding noise. In: ICML Workshop on Visualization for Deep Learning (2017)
32.
go back to reference Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. In: ICLR 2015 Workshop (2015) Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. In: ICLR 2015 Workshop (2015)
33.
go back to reference Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, PMLR, International Convention Centre, Sydney, Australia, vol. 70, pp. 3319–3328, 06–11 August 2017 Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, PMLR, International Convention Centre, Sydney, Australia, vol. 70, pp. 3319–3328, 06–11 August 2017
34.
go back to reference Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016) Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
35.
go back to reference Szegedy, C., et al.: Intriguing properties of neural networks. In: International Conference on Learning Representations (ICLR) (2014) Szegedy, C., et al.: Intriguing properties of neural networks. In: International Conference on Learning Representations (ICLR) (2014)
36.
go back to reference Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. Trans. Assoc. Comput. Linguist. 5, 339–351 (2017)CrossRef Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. Trans. Assoc. Comput. Linguist. 5, 339–351 (2017)CrossRef
38.
go back to reference Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction difference analysis. In: International Conference on Learning Representations (2017) Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction difference analysis. In: International Conference on Learning Representations (2017)
Metadata
Title
Gradient-Based Attribution Methods
Authors
Marco Ancona
Enea Ceolini
Cengiz Öztireli
Markus Gross
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-28954-6_9

Premium Partner