Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

23-03-2020 | Original Article | Issue 10/2020

International Journal of Machine Learning and Cybernetics 10/2020

Gradient boosting in crowd ensembles for Q-learning using weight sharing

Journal:
International Journal of Machine Learning and Cybernetics > Issue 10/2020
Authors:
D. L. Elliott, K. C. Santosh, Charles Anderson
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Reinforcement learning (RL) is a double-edged sword: it frees the human trainer from having to provide voluminous supervised training data or from even knowing a solution. On the other hand, a common complaint about RL is that learning is slow. Deep Q-learning (DQN), a somewhat recent development, has allowed practitioners and scientists to solve tasks previously thought unsolvable by a reinforcement learning approach. However DQN has resulted in an explosion in the number of model parameters which has further exasperated the computational needs of Q-learning during training. In this work, an ensemble approach which improves the training time, in terms of the number of interactions with the training environment, is proposed. In the presented experiments, it is shown that the proposed approach improves stability of during training, results in improved average performance, results in more reliable training, and faster learning of features in convolutional layers.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 10/2020

International Journal of Machine Learning and Cybernetics 10/2020 Go to the issue