Skip to main content
Top
Published in: Neural Processing Letters 4/2021

28-05-2021

Grading of Knee Osteoarthritis Using Convolutional Neural Networks

Authors: D. R. Sarvamangala, Raghavendra V. Kulkarni

Published in: Neural Processing Letters | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Knee osteoarthritis (OA) is a disease of the joints and a leading cause of disability among the elderly. If detected at an early stage, its advancement can be slowed and the patient’s suffering can be reduced. A new approach involving multiscale convolutional blocks in convolutional neural network (MCBCNN) has been introduced in this paper for automatic classification and grading of knee OA. The proposed model is implemented using pretrained convolutional neural networks (CNNs) and multiscale convolutional filters. Three pretrained CNN models, namely mobileNet2, resNet50 and inceptionNetv3 have been used for the implementation of MCBCNN. Exhaustive performance analysis has been conducted on the three proposed models. The results of knee OA grading delivered by all the three proposed MCBCNNs have been compared. The results show that the performance of MCBCNNs is better than that of the pretrained CNNs. Among the proposed three MCBCNNs, the MCB resNet50 delivers better performance in terms of average accuracy of over \(95\%\), area under curve of nearly 0.9 and F1 score of 0.8.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abedin J et al (2019) Predicting knee osteoarthritis severity: comparative modeling based on patient’s data and plain x-ray images. Sci Rep 9(1):5761CrossRef Abedin J et al (2019) Predicting knee osteoarthritis severity: comparative modeling based on patient’s data and plain x-ray images. Sci Rep 9(1):5761CrossRef
2.
go back to reference Anthimopoulos M et al (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imag 35(5):1207–1216CrossRef Anthimopoulos M et al (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imag 35(5):1207–1216CrossRef
3.
go back to reference Antony J et al. (2016) Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. In: Proceedings of the 23rd international conference on pattern recognition (ICPR), IEEE pp. 1195–1200 Antony J et al. (2016) Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. In: Proceedings of the 23rd international conference on pattern recognition (ICPR), IEEE pp. 1195–1200
4.
go back to reference Bellamy N et al (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15(12):1833–1840 Bellamy N et al (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15(12):1833–1840
5.
go back to reference Bengio Y (2012) Deep learning of representations for unsupervised and transfer learning. In: I. Guyon, G. Dror, V. Lemaire, G.W. Taylor, D.L. Silver (eds.) Unsupervised and transfer learning - Workshop held at ICML 2011, Bellevue, Washington, USA, July 2, 2011, JMLR Proceedings, vol. 27, pp. 17–36. JMLR.org Bengio Y (2012) Deep learning of representations for unsupervised and transfer learning. In: I. Guyon, G. Dror, V. Lemaire, G.W. Taylor, D.L. Silver (eds.) Unsupervised and transfer learning - Workshop held at ICML 2011, Bellevue, Washington, USA, July 2, 2011, JMLR Proceedings, vol. 27, pp. 17–36. JMLR.org
7.
go back to reference Chen P, Gao L, Shi X, Allen K, Yang L (2019) Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss. Comput Med Imag Graph 75:84–92CrossRef Chen P, Gao L, Shi X, Allen K, Yang L (2019) Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss. Comput Med Imag Graph 75:84–92CrossRef
8.
go back to reference Du Y et al (2018) A novel method to predict knee osteoarthritis progression on MRI using machine learning methods. IEEE Trans Nanobiosci 17(3):228–236CrossRef Du Y et al (2018) A novel method to predict knee osteoarthritis progression on MRI using machine learning methods. IEEE Trans Nanobiosci 17(3):228–236CrossRef
9.
go back to reference Emad O, Yassine IA, Fahmy AS (2015) Automatic localization of the left ventricle in cardiac MRI images using deep learning. In: Proceedings of the 37th IEEE annual international conference on engineering in medicine and biology society (EMBC), pp. 683–686 Emad O, Yassine IA, Fahmy AS (2015) Automatic localization of the left ventricle in cardiac MRI images using deep learning. In: Proceedings of the 37th IEEE annual international conference on engineering in medicine and biology society (EMBC), pp. 683–686
10.
go back to reference Fei-Fei L, Deng J, Li K (2009) ImageNet: constructing a large-scale image database. J Vis 9(8):1037CrossRef Fei-Fei L, Deng J, Li K (2009) ImageNet: constructing a large-scale image database. J Vis 9(8):1037CrossRef
11.
go back to reference Gao XW, Hui R (2016) A deep learning based approach to classification of CT brain images. In: Proceedings of the SAI computing conference, pp. 28–31 Gao XW, Hui R (2016) A deep learning based approach to classification of CT brain images. In: Proceedings of the SAI computing conference, pp. 28–31
12.
go back to reference van Grinsven MJ et al (2016) Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans Med Imag 35(5):1273–1284CrossRef van Grinsven MJ et al (2016) Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans Med Imag 35(5):1273–1284CrossRef
13.
go back to reference Havaei M et al (2017) Brain tumor segmentation with deep neural networks. Med Imag Anal 35:18–31CrossRef Havaei M et al (2017) Brain tumor segmentation with deep neural networks. Med Imag Anal 35:18–31CrossRef
14.
go back to reference He K, et al. (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, (CVPR), pp. 770–778 He K, et al. (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, (CVPR), pp. 770–778
15.
go back to reference K, A.J.M., K, M., N.E, O (2017) Automatic detection of knee joints and quantification of knee osteoarthritis severity using convolutional neural networks. In: Machine learning and data mining in pattern recognition. Lecture notes in computer science, Springer, vol. 10358. https://doi.org/10.1007/978-3-319-62416-7_27 K, A.J.M., K, M., N.E, O (2017) Automatic detection of knee joints and quantification of knee osteoarthritis severity using convolutional neural networks. In: Machine learning and data mining in pattern recognition. Lecture notes in computer science, Springer, vol. 10358. https://​doi.​org/​10.​1007/​978-3-319-62416-7_​27
16.
go back to reference Kashyap S et al (2018) Learning-based cost functions for 3-D and 4-D multi-surface multi-object segmentation of knee MRI: ddata from the osteoarthritis initiative. IEEE Trans Med Imag 37(5):1103–1113CrossRef Kashyap S et al (2018) Learning-based cost functions for 3-D and 4-D multi-surface multi-object segmentation of knee MRI: ddata from the osteoarthritis initiative. IEEE Trans Med Imag 37(5):1103–1113CrossRef
18.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings of the 26th Annual conference on neural information processing systems, pp. 1106–1114 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings of the 26th Annual conference on neural information processing systems, pp. 1106–1114
19.
go back to reference LeCun Y et al (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef LeCun Y et al (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
21.
go back to reference Oka H et al (2008) Fully automatic quantification of knee osteoarthritis severity on plain radiographs. Osteoarthr Cartil 16(11):1300–1306CrossRef Oka H et al (2008) Fully automatic quantification of knee osteoarthritis severity on plain radiographs. Osteoarthr Cartil 16(11):1300–1306CrossRef
23.
go back to reference Pal CP et al (2016) Epidemiology of knee osteoarthritis in India and related factors. Indian J Orthop 50(5):518CrossRef Pal CP et al (2016) Epidemiology of knee osteoarthritis in India and related factors. Indian J Orthop 50(5):518CrossRef
24.
go back to reference Panfilov E, et al.: Improving robustness of deep learning based knee MRI segmentation: Mixup and adversarial domain adaptation. CoRR abs/1908.04126 (2019) Panfilov E, et al.: Improving robustness of deep learning based knee MRI segmentation: Mixup and adversarial domain adaptation. CoRR abs/1908.04126 (2019)
25.
go back to reference Pratt H, et al. (2016) Convolutional neural networks for diabetic retinopathy. In: Proceedings of the 20th conference on medical image understanding and analysis, MIUA, pp. 200–205 Pratt H, et al. (2016) Convolutional neural networks for diabetic retinopathy. In: Proceedings of the 20th conference on medical image understanding and analysis, MIUA, pp. 200–205
27.
go back to reference Sajjad M et al (2019) Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J Comput Sci 30:174–182CrossRef Sajjad M et al (2019) Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J Comput Sci 30:174–182CrossRef
28.
go back to reference Sarvamangala D, Kulkarni RV (2021) Convolutional neural networks in medical image understanding: a survey. Evolutionary Intelligence pp. 1–22 Sarvamangala D, Kulkarni RV (2021) Convolutional neural networks in medical image understanding: a survey. Evolutionary Intelligence pp. 1–22
29.
go back to reference Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. Computer Research Repository abs/1409.1556 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. Computer Research Repository abs/1409.1556
30.
go back to reference Sirinukunwattana K et al (2016) Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imag 35(5):1196–1206CrossRef Sirinukunwattana K et al (2016) Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imag 35(5):1196–1206CrossRef
31.
go back to reference Subramoniam Barani (2015) Rajini: a non-invasive computer aided diagnosis of osteoarthritis from digital x-ray images. Biomed Res 26:721–729 Subramoniam Barani (2015) Rajini: a non-invasive computer aided diagnosis of osteoarthritis from digital x-ray images. Biomed Res 26:721–729
32.
go back to reference Subramoniam M, Rajini V (2013) Local binary pattern approach to the classification of osteoarthritis in knee x-ray images. Asian J Sci Res 6(4):805–811CrossRef Subramoniam M, Rajini V (2013) Local binary pattern approach to the classification of osteoarthritis in knee x-ray images. Asian J Sci Res 6(4):805–811CrossRef
33.
go back to reference Sun W et al (2017) Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput Med Imag Graph 57:4–9CrossRef Sun W et al (2017) Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput Med Imag Graph 57:4–9CrossRef
34.
go back to reference Szegedy C, et al. (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp. 1–9 Szegedy C, et al. (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp. 1–9
35.
go back to reference Tajbakhsh N et al (2016) Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans Med Imag 35(5):1299–1312CrossRef Tajbakhsh N et al (2016) Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans Med Imag 35(5):1299–1312CrossRef
36.
go back to reference Tiulpin A et al (2018) Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci Rep 8(1):17–27CrossRef Tiulpin A et al (2018) Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci Rep 8(1):17–27CrossRef
37.
go back to reference Torre L, Shavli JW, Walker T, Maclin R (2010) Transfer learning via advice taking. In: J. Koronacki, Z.W. Ras, S.T. Wierzchon, J. Kacprzyk (eds.) Advances in machine learning I: dedicated to the memory of Professor Ryszard S. Michalski, Studies in Computational Intelligence, vol. 262, pp. 147–170. Springer Torre L, Shavli JW, Walker T, Maclin R (2010) Transfer learning via advice taking. In: J. Koronacki, Z.W. Ras, S.T. Wierzchon, J. Kacprzyk (eds.) Advances in machine learning I: dedicated to the memory of Professor Ryszard S. Michalski, Studies in Computational Intelligence, vol. 262, pp. 147–170. Springer
38.
go back to reference Wang D, et al. (2016) Deep learning for identifying metastatic breast cancer. Computer Research Repository abs/1606.05718 Wang D, et al. (2016) Deep learning for identifying metastatic breast cancer. Computer Research Repository abs/1606.05718
39.
go back to reference Zhao L, Ji K (2015) Deep feature learning with discrimination mechanism for brain tumor segmentation and diagnosis. In: Proceedings of the international conference onintelligent information hiding and multimedia signal processing (IIH-MSP), pp. 306–309. IEEE Zhao L, Ji K (2015) Deep feature learning with discrimination mechanism for brain tumor segmentation and diagnosis. In: Proceedings of the international conference onintelligent information hiding and multimedia signal processing (IIH-MSP), pp. 306–309. IEEE
Metadata
Title
Grading of Knee Osteoarthritis Using Convolutional Neural Networks
Authors
D. R. Sarvamangala
Raghavendra V. Kulkarni
Publication date
28-05-2021
Publisher
Springer US
Published in
Neural Processing Letters / Issue 4/2021
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10529-3

Other articles of this Issue 4/2021

Neural Processing Letters 4/2021 Go to the issue