Skip to main content
Top
Published in: Physics of Metals and Metallography 11/2021

01-11-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Grain Boundary Sliding along Special Asymmetric Grain Boundaries in the Al Bicrystals: Atomistic Molecular Dynamics Simulation

Authors: L. E. Kar’kina, I. N. Kar’kin, Yu. N. Gornostyrev

Published in: Physics of Metals and Metallography | Issue 11/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To elucidate the mechanisms controlling the processes of sliding along grain boundaries (GBs), the energy characteristics of grain boundary shears for asymmetric GBs with tilts Σ5{010}/{340}〈001〉 and Σ5{110}/{710}〈001〉 in an Al bicrystal have been calculated by the molecular dynamics simulation method. The energy of generalized grain-boundary stacking faults (GB–SF) is determined, and the preferred directions and the energy barrier for grain-boundary sliding are established. The following characteristic feature of asymmetric boundaries is found: the number of different nonequivalent sections for GB sliding parallel to the plane of the GB for these kinds of boundaries is substantially higher than for symmetric ones. It is shown that the type of the section confining the GB has a substantial effect on both the geometry of the γ surface and the energy characteristics of the grain-boundary SF (GB–SF).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. W. Cahn, Yu. Mishin, and A. Suzuki, “Coupling grain boundary motion to shear deformation,” Acta Mater. 54, 4953–4975 (2006).CrossRef J. W. Cahn, Yu. Mishin, and A. Suzuki, “Coupling grain boundary motion to shear deformation,” Acta Mater. 54, 4953–4975 (2006).CrossRef
2.
go back to reference S. V. Bobylev, N. F. Morozov, and I. A. Ovid’ko, “Cooperative grain boundary sliding and nanograin nucleation process in nanocrystalline, ultrafine-grained, and polycrystalline solids,” Phys. Rev. B 84, 094103 (2011).CrossRef S. V. Bobylev, N. F. Morozov, and I. A. Ovid’ko, “Cooperative grain boundary sliding and nanograin nucleation process in nanocrystalline, ultrafine-grained, and polycrystalline solids,” Phys. Rev. B 84, 094103 (2011).CrossRef
3.
go back to reference R. Hadian, B. Grabowski, C. P. Race, and J. Neugebauer, “Atomistic migration mechanisms of atomically flat, stepped, and kinked grain boundaries,” Phys. Rev. B 94, 165413 (2016).CrossRef R. Hadian, B. Grabowski, C. P. Race, and J. Neugebauer, “Atomistic migration mechanisms of atomically flat, stepped, and kinked grain boundaries,” Phys. Rev. B 94, 165413 (2016).CrossRef
4.
go back to reference T. G. Langdon, “Grain boundary sliding revisited: Developments in sliding over four decades,” J. Mater. Sci. 41, 597–609 (2006).CrossRef T. G. Langdon, “Grain boundary sliding revisited: Developments in sliding over four decades,” J. Mater. Sci. 41, 597–609 (2006).CrossRef
5.
go back to reference J. Li and A. K. Soh, “Synergy of grain boundary sliding and shear-coupled migration process in nanocrystalline materials,” Acta Mater. 61, 5449–5457 (2013).CrossRef J. Li and A. K. Soh, “Synergy of grain boundary sliding and shear-coupled migration process in nanocrystalline materials,” Acta Mater. 61, 5449–5457 (2013).CrossRef
6.
go back to reference F. Mompiou, D. Caillard, and M. Legros, “Grain boundary shear–migration coupling. II. Geometrical model for general boundaries,” Acta Mater. 57, 2390–2402 (2009).CrossRef F. Mompiou, D. Caillard, and M. Legros, “Grain boundary shear–migration coupling. II. Geometrical model for general boundaries,” Acta Mater. 57, 2390–2402 (2009).CrossRef
7.
go back to reference F. Mompiou, M. Legros, and D. Caillard, “SMIG model: A new geometrical model to quantify grain boundary-based plasticity,” Acta Mater. 58, 3676–3689 (2010).CrossRef F. Mompiou, M. Legros, and D. Caillard, “SMIG model: A new geometrical model to quantify grain boundary-based plasticity,” Acta Mater. 58, 3676–3689 (2010).CrossRef
8.
go back to reference M. Guillope and J. P. Poirier, “A model for stress-induced migration of tilt grain boundaries in crystals of NaCl structure,” Acta Metall. 28, 163–167 (1980).CrossRef M. Guillope and J. P. Poirier, “A model for stress-induced migration of tilt grain boundaries in crystals of NaCl structure,” Acta Metall. 28, 163–167 (1980).CrossRef
9.
go back to reference S. E. Babcock and R. W. Balluffi, “Grain boundary kinetics,” Acta Metall. 37, 2357–2367 (1989).CrossRef S. E. Babcock and R. W. Balluffi, “Grain boundary kinetics,” Acta Metall. 37, 2357–2367 (1989).CrossRef
10.
go back to reference J. Schiotz and K. W. Jacobsen, “A maximum in the strength of nanocrystalline copper,” Science 301, 1357–1359 (2003).CrossRef J. Schiotz and K. W. Jacobsen, “A maximum in the strength of nanocrystalline copper,” Science 301, 1357–1359 (2003).CrossRef
11.
go back to reference H. Van Swygenhoven and J. R. Weertman, “Deformation in nanocrystalline metals,” Mater. Today 9, 24–31 (2006).CrossRef H. Van Swygenhoven and J. R. Weertman, “Deformation in nanocrystalline metals,” Mater. Today 9, 24–31 (2006).CrossRef
12.
go back to reference D. Farkas, A. Froseth, and H. Van Swygenhoven, “Grain boundary migration during room temperature deformation of nanocrystalline Ni,” Scr. Mater. 55, 695–698 (2006).CrossRef D. Farkas, A. Froseth, and H. Van Swygenhoven, “Grain boundary migration during room temperature deformation of nanocrystalline Ni,” Scr. Mater. 55, 695–698 (2006).CrossRef
13.
go back to reference D. S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K. J. Hemker, “Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films,” Acta Mater. 54, 2253–2263 (2006).CrossRef D. S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K. J. Hemker, “Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films,” Acta Mater. 54, 2253–2263 (2006).CrossRef
14.
go back to reference M. Legros, D. S. Gianola, and K. J. Hember, “In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films,” Acta Mater. 56, 3380–3393 (2008).CrossRef M. Legros, D. S. Gianola, and K. J. Hember, “In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films,” Acta Mater. 56, 3380–3393 (2008).CrossRef
15.
go back to reference M. Yu. Gutkin, K. N. Mikaelyan, and I. A. Ovid’ko, “Grain growth and collective migration of grain boundaries during plastic deformation of nanocrystalline materials,” Phys. Solid State 50, 1266–1279 (2008).CrossRef M. Yu. Gutkin, K. N. Mikaelyan, and I. A. Ovid’ko, “Grain growth and collective migration of grain boundaries during plastic deformation of nanocrystalline materials,” Phys. Solid State 50, 1266–1279 (2008).CrossRef
16.
go back to reference L. Lu, X. Chen, X. Huang, and K. Lu, “Revealing the maximum strength in nanotwinned copper,” Science 323, 607–610 (2009).CrossRef L. Lu, X. Chen, X. Huang, and K. Lu, “Revealing the maximum strength in nanotwinned copper,” Science 323, 607–610 (2009).CrossRef
17.
go back to reference G. Purceka, O. Saraya, M. I. Nagimov, A. A. Nazarov, I. M. Safarov, V. N. Danilenko, O. R. Valiakhmetov, and R. R. Mulyukov, “Microstructure and mechanical behavior of UFG copper processed by ECAP following different processing regimes,” Philos. Mag. 92, 690–704 (2012).CrossRef G. Purceka, O. Saraya, M. I. Nagimov, A. A. Nazarov, I. M. Safarov, V. N. Danilenko, O. R. Valiakhmetov, and R. R. Mulyukov, “Microstructure and mechanical behavior of UFG copper processed by ECAP following different processing regimes,” Philos. Mag. 92, 690–704 (2012).CrossRef
18.
go back to reference Y. F. Shen, L. Lu, Q. H. Lu, Z. H. Jin, and K. Lu, “Tensile properties of copper with nano-scale twins,” Scr. Mater. 52, 989–994.(2005).CrossRef Y. F. Shen, L. Lu, Q. H. Lu, Z. H. Jin, and K. Lu, “Tensile properties of copper with nano-scale twins,” Scr. Mater. 52, 989–994.(2005).CrossRef
19.
go back to reference L. E. Kar’kina, I. N. Kar’kin, A. R. Kuznetsov, and Yu. N. Gornostyrev, “Grain-boundary shear-migration coupling in al bicrystals. atomistic modeling,” Phys. Solid State 60, 1916–1923 (2018).CrossRef L. E. Kar’kina, I. N. Kar’kin, A. R. Kuznetsov, and Yu. N. Gornostyrev, “Grain-boundary shear-migration coupling in al bicrystals. atomistic modeling,” Phys. Solid State 60, 1916–1923 (2018).CrossRef
20.
go back to reference L. E. Kar’kina, I. N. Kar’kin, and Yu. N. Gornostyrev, “Effect of alloying element segregations on the grain boundary sliding in Al–Mg and Al–Ni alloy bicrystals: atomistic modeling,” Phys. Met. Metallogr. 121, No. 9, 817–822 (2020).CrossRef L. E. Kar’kina, I. N. Kar’kin, and Yu. N. Gornostyrev, “Effect of alloying element segregations on the grain boundary sliding in Al–Mg and Al–Ni alloy bicrystals: atomistic modeling,” Phys. Met. Metallogr. 121, No. 9, 817–822 (2020).CrossRef
21.
go back to reference A. Kuznetsov, L. Karkina, Yu. Gornostyrev, and P. Korzhavyi, “Effects of Zn and Mg segregations on the grain boundary sliding and cohesion in Al: Ab initio modeling,” Metals 11, 631 (2021).CrossRef A. Kuznetsov, L. Karkina, Yu. Gornostyrev, and P. Korzhavyi, “Effects of Zn and Mg segregations on the grain boundary sliding and cohesion in Al: Ab initio modeling,” Metals 11, 631 (2021).CrossRef
22.
go back to reference L. Karkina, I. Karkin, A. Kuznetsov, and Yu. Gornostyrev, “Alloying element segregation and grain boundary reconstruction, atomistic modeling,” Metals. 9, 1319 (2019).CrossRef L. Karkina, I. Karkin, A. Kuznetsov, and Yu. Gornostyrev, “Alloying element segregation and grain boundary reconstruction, atomistic modeling,” Metals. 9, 1319 (2019).CrossRef
23.
go back to reference M. A. Tschopp and D. L. Macdowell, “Asymmetric tilt grain boundary structure and energy in copper and aluminum,” Phil. Mag. 87, 3871–3892 (2007).CrossRef M. A. Tschopp and D. L. Macdowell, “Asymmetric tilt grain boundary structure and energy in copper and aluminum,” Phil. Mag. 87, 3871–3892 (2007).CrossRef
24.
go back to reference F. Cao, Y. Jiang, T. Hu, D. Yin, “Correlation of grain boundary extra free volume with vacancy and solute segregation at grain boundaries: a case study for Al,” Philos. Mag. 98, 464–483 (2018).CrossRef F. Cao, Y. Jiang, T. Hu, D. Yin, “Correlation of grain boundary extra free volume with vacancy and solute segregation at grain boundaries: a case study for Al,” Philos. Mag. 98, 464–483 (2018).CrossRef
25.
26.
go back to reference F. Apostol and Y. Mishin, “Interatomic potential for the Al–Cu system,” Phys. Rev. B 83, 054116 (2011).CrossRef F. Apostol and Y. Mishin, “Interatomic potential for the Al–Cu system,” Phys. Rev. B 83, 054116 (2011).CrossRef
27.
28.
go back to reference M. P. Dewald and W. A. Curtin, “Multiscale modelling of dislocation/grain boundary interactions. II. Screw dislocations impinging on tilt boundaries in Al,” Philos. Mag. 87, 4615–4641 (2007).CrossRef M. P. Dewald and W. A. Curtin, “Multiscale modelling of dislocation/grain boundary interactions. II. Screw dislocations impinging on tilt boundaries in Al,” Philos. Mag. 87, 4615–4641 (2007).CrossRef
Metadata
Title
Grain Boundary Sliding along Special Asymmetric Grain Boundaries in the Al Bicrystals: Atomistic Molecular Dynamics Simulation
Authors
L. E. Kar’kina
I. N. Kar’kin
Yu. N. Gornostyrev
Publication date
01-11-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 11/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21110077

Other articles of this Issue 11/2021

Physics of Metals and Metallography 11/2021 Go to the issue