Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 14/2021

18-08-2021 | STRENGTH AND PLASTICITY

Grain Refinement and Strengthening Mechanism Analysis of an Ultrahigh Strength Sc(Er)–Zr–7075 Aluminum Alloy

Authors: Jinfeng Leng, Binghui Ren, Yunfan Dong, Hao Wu

Published in: Physics of Metals and Metallography | Issue 14/2021

Login to get access
share
SHARE

Abstract

The influence mechanisms of Er and Zr or Sc and Zr addition on the microstructure and mechanical properties of 7075 aluminum alloys were elucidated. Synchronous enhancements in strength and ductility were obtained in 7075S (Sc–Zr–7075) aluminum alloys. The improvement of strength and ductility was mainly attributed to grain refinement and Orowan strengthening of Al3(Sc,Zr) phase. The grain size of 7075E (Er–Zr–7075) and 7075S alloys are remarkably refined as compared to 7075 aluminum alloy. The lower mismatch between Al3(Sc,Zr) phase and α-Al provides more effective heterogeneous nucleation sites for α-Al in the solidification process, and thus the grain refinement effect is more significant. The higher volume fraction and smaller particle size of Al3(Sc,Zr) than Al3(Er,Zr) phase lead to higher Orowan strength of 7075S aluminum alloy.
Literature
1.
go back to reference M. Zhang, T. Liu, C. He, J. Ding, E. Liu, C. Shi, J. Li, and N. Zhao, “Evolution of microstructure and properties of Al–Zn–Mg–Cu–Sc–Zr alloy during aging treatment,” J. Alloys Compd. 658, 946–951 (2016). CrossRef M. Zhang, T. Liu, C. He, J. Ding, E. Liu, C. Shi, J. Li, and N. Zhao, “Evolution of microstructure and properties of Al–Zn–Mg–Cu–Sc–Zr alloy during aging treatment,” J. Alloys Compd. 658, 946–951 (2016). CrossRef
2.
go back to reference A. D. Kotov, A. V. Mikhaylovskaya, A. A. Borisov, O. A. Yakovtseva, and V. K. Portnoy, “High-strain-rate superplasticity of the Al–Zn–Mg–Cu alloys with Fe and Ni additions,” Phys. Met. Metallogr. 118, 913–921 (2017). CrossRef A. D. Kotov, A. V. Mikhaylovskaya, A. A. Borisov, O. A. Yakovtseva, and V. K. Portnoy, “High-strain-rate superplasticity of the Al–Zn–Mg–Cu alloys with Fe and Ni additions,” Phys. Met. Metallogr. 118, 913–921 (2017). CrossRef
3.
go back to reference W. Sun, Y. Zhu, R. Marceau, L. Wang, Q. Zhang, X. Gao, and C. Hutchinson, “Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity,” Science 363 (6430), 972–975 (2019). CrossRef W. Sun, Y. Zhu, R. Marceau, L. Wang, Q. Zhang, X. Gao, and C. Hutchinson, “Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity,” Science 363 (6430), 972–975 (2019). CrossRef
4.
go back to reference Z. Y. Guo, G. Zhao, and X. Chen, “Effects of homogenization treatment on recrystallization behavior of 7150 aluminum sheet during post-rolling annealing,” Mater. Charact. 114, 79–87 (2016). CrossRef Z. Y. Guo, G. Zhao, and X. Chen, “Effects of homogenization treatment on recrystallization behavior of 7150 aluminum sheet during post-rolling annealing,” Mater. Charact. 114, 79–87 (2016). CrossRef
5.
go back to reference T. Gao, Y. Zhang, and X. Liu, “Influence of trace Ti on the microstructure, age hardening behavior and mechanical properties of an Al–Zn–Mg–Cu–r alloy,” Mater. Sci. Eng., A 598, 293–298 (2014). CrossRef T. Gao, Y. Zhang, and X. Liu, “Influence of trace Ti on the microstructure, age hardening behavior and mechanical properties of an Al–Zn–Mg–Cu–r alloy,” Mater. Sci. Eng., A 598, 293–298 (2014). CrossRef
6.
go back to reference O. Sh. Sitdikov, E. V. Avtokratova, O. E. Mukhametdinova, R. N. Garipova, and M. V. Markushev, “Effect of the size of Al 3(Sc,Zr) precipitates on the structure of multi-directionally isothermally forged Al–Mg–Sc–Zr alloy,” Phys. Met. Metallogr. 118, 1215–1224 (2017). CrossRef O. Sh. Sitdikov, E. V. Avtokratova, O. E. Mukhametdinova, R. N. Garipova, and M. V. Markushev, “Effect of the size of Al 3(Sc,Zr) precipitates on the structure of multi-directionally isothermally forged Al–Mg–Sc–Zr alloy,” Phys. Met. Metallogr. 118, 1215–1224 (2017). CrossRef
7.
go back to reference Y. Deng, Z. Yin, K. Zhao, J. Duan, and Z. He, “Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al–Zn–Mg alloys,” J. Alloys Compd. 530, 71–80 (2012). CrossRef Y. Deng, Z. Yin, K. Zhao, J. Duan, and Z. He, “Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al–Zn–Mg alloys,” J. Alloys Compd. 530, 71–80 (2012). CrossRef
8.
go back to reference Y. Deng, G. F. Xu, Z. M. Yin, X. F. Lei, and J. W. Huang, “Effects of Sc and Zr microalloying additions on the recrystallization texture and mechanism of Al–Zn–Mg alloys,” J. Alloys Compd. 580, 412–426 (2013). CrossRef Y. Deng, G. F. Xu, Z. M. Yin, X. F. Lei, and J. W. Huang, “Effects of Sc and Zr microalloying additions on the recrystallization texture and mechanism of Al–Zn–Mg alloys,” J. Alloys Compd. 580, 412–426 (2013). CrossRef
9.
go back to reference G. Teng, C. Liu, Z. Ma, W. Zhou, L. Wei, Y. Chen, J. Li, and Y. Mo, “Effects of minor Sc addition on the microstructure and mechanical properties of 7055 Al alloy during aging,” Mater. Sci. Eng., A 713, 61–66 (2018). CrossRef G. Teng, C. Liu, Z. Ma, W. Zhou, L. Wei, Y. Chen, J. Li, and Y. Mo, “Effects of minor Sc addition on the microstructure and mechanical properties of 7055 Al alloy during aging,” Mater. Sci. Eng., A 713, 61–66 (2018). CrossRef
10.
go back to reference B. Li, Q. L. Pan, X. Huang, and Z. M. Yin, “Microstructures and properties of Al–Zn–Mg–Mn alloy with trace amounts of Sc and Zr,” Mater. Sci. Eng., A 616, 219–228 (2014). CrossRef B. Li, Q. L. Pan, X. Huang, and Z. M. Yin, “Microstructures and properties of Al–Zn–Mg–Mn alloy with trace amounts of Sc and Zr,” Mater. Sci. Eng., A 616, 219–228 (2014). CrossRef
11.
go back to reference S. Malopheyev, V. Kulitskiy, and R. Kaibyshev, “Deformation structures and strengthening mechanisms in an Al–Mg–Sc–Zr alloy,” J. Alloys Compd. 698, 957–966 (2017). CrossRef S. Malopheyev, V. Kulitskiy, and R. Kaibyshev, “Deformation structures and strengthening mechanisms in an Al–Mg–Sc–Zr alloy,” J. Alloys Compd. 698, 957–966 (2017). CrossRef
12.
go back to reference S. P. Wen, K. Y. Gao, H. Huang, W. Wang, and Z. R. Nie, “Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature,” J. Alloys Compd. 574, 92–97 (2013). CrossRef S. P. Wen, K. Y. Gao, H. Huang, W. Wang, and Z. R. Nie, “Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature,” J. Alloys Compd. 574, 92–97 (2013). CrossRef
13.
go back to reference H. C. Fang, H. Chao, and K. H. Chen, “Effect of Zr, Er and Cr additions on microstructures and properties of Al–Zn–Mg–Cu alloys,” Mater. Sci. Eng., A 610, 10–16 (2014). CrossRef H. C. Fang, H. Chao, and K. H. Chen, “Effect of Zr, Er and Cr additions on microstructures and properties of Al–Zn–Mg–Cu alloys,” Mater. Sci. Eng., A 610, 10–16 (2014). CrossRef
14.
go back to reference H. Wu, S. P. Wen, J. T. Lu, Z. P. Mi, X. L. Zeng, H. Huang, and Z. R. Nie, “Microstructural evolution of new type Al–Zn–Mg–Cu alloy with Er and Zr additions during homogenization,” Trans. Nonferrous Met. Soc. China 27, 1476–1482 (2017). CrossRef H. Wu, S. P. Wen, J. T. Lu, Z. P. Mi, X. L. Zeng, H. Huang, and Z. R. Nie, “Microstructural evolution of new type Al–Zn–Mg–Cu alloy with Er and Zr additions during homogenization,” Trans. Nonferrous Met. Soc. China 27, 1476–1482 (2017). CrossRef
15.
go back to reference G. Yan, C. Wenlin, G. Zhen, and W. Liang, “Effect of rare earth metals on mechanical and corrosion properties of Al–Zn–Mg–Cu–Zr alloy,” Rare Met. Mater. Eng. 46, 2070–2075 (2017). CrossRef G. Yan, C. Wenlin, G. Zhen, and W. Liang, “Effect of rare earth metals on mechanical and corrosion properties of Al–Zn–Mg–Cu–Zr alloy,” Rare Met. Mater. Eng. 46, 2070–2075 (2017). CrossRef
16.
go back to reference G. F. Xu, S. Z. Mou, J. J. Yang, T. N. Jin, Z. R. Nie, and Z. M. Yin, “Effect of trace rare earth element Er on Al–Zn–Mg alloy,” Trans. Nonferrous Met. Soc. China 16, 598–603 (2006). CrossRef G. F. Xu, S. Z. Mou, J. J. Yang, T. N. Jin, Z. R. Nie, and Z. M. Yin, “Effect of trace rare earth element Er on Al–Zn–Mg alloy,” Trans. Nonferrous Met. Soc. China 16, 598–603 (2006). CrossRef
17.
go back to reference S. K. Tian, J. Y. Li, and J. L. Zhang, “Effect of Zr and Sc on microstructure and properties of 7136 aluminum alloy,” J. Mater. Res. Technol. 8, 4130–4140 (2019). CrossRef S. K. Tian, J. Y. Li, and J. L. Zhang, “Effect of Zr and Sc on microstructure and properties of 7136 aluminum alloy,” J. Mater. Res. Technol. 8, 4130–4140 (2019). CrossRef
18.
go back to reference D. H. Xiao, M. Song, H. Q. Zhang, and K. H. Chen, “Effect of Sc on the microstructure and properties of as-cast Al–Cu–Mg–Ag–Zr alloys,” Science 4, 239–242 (2009). D. H. Xiao, M. Song, H. Q. Zhang, and K. H. Chen, “Effect of Sc on the microstructure and properties of as-cast Al–Cu–Mg–Ag–Zr alloys,” Science 4, 239–242 (2009).
19.
go back to reference B. L. Bramfitt, “The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron,” Metall. Trans. 1, 1987–1995 (1970). CrossRef B. L. Bramfitt, “The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron,” Metall. Trans. 1, 1987–1995 (1970). CrossRef
20.
go back to reference H. Q. Cao, “Preparation and properties of oxide dispersion strengthened aluminum alloys,” (2015). H. Q. Cao, “Preparation and properties of oxide dispersion strengthened aluminum alloys,” (2015).
21.
go back to reference A. Loucif, R. B. Figueiredo, T. Baudinc, F. Brisset, R. Chemam, and T. G. Langdon, “Ultrafine grains and the Hall–Petch relationship in an Al–Mg–Si alloy processed by high-pressure torsion,” Mater. Sci. Eng., A 532, 139–145 (2012). CrossRef A. Loucif, R. B. Figueiredo, T. Baudinc, F. Brisset, R. Chemam, and T. G. Langdon, “Ultrafine grains and the Hall–Petch relationship in an Al–Mg–Si alloy processed by high-pressure torsion,” Mater. Sci. Eng., A 532, 139–145 (2012). CrossRef
22.
go back to reference P. Lehto, H. Remes, T. Saukkonen, H. Hänninen, and J. Romanoff, “Influence of grain size distribution on the Hall–Petch relationship of welded structural steel,” Mater. Sci. Eng., A 592, 28–39 (2014). CrossRef P. Lehto, H. Remes, T. Saukkonen, H. Hänninen, and J. Romanoff, “Influence of grain size distribution on the Hall–Petch relationship of welded structural steel,” Mater. Sci. Eng., A 592, 28–39 (2014). CrossRef
23.
go back to reference Y. J. Li, A. M. F. Muggerud, A. Olsen, and T. Furu, “Precipitation of partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA3003 alloy,” Acta Mater. 60, 1004–1014 (2012). CrossRef Y. J. Li, A. M. F. Muggerud, A. Olsen, and T. Furu, “Precipitation of partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA3003 alloy,” Acta Mater. 60, 1004–1014 (2012). CrossRef
24.
go back to reference X. Sauvage, E. V. Bobruk, M. Yu. Murashkin, Y. Nasedkina, N. A. Enikeev, and R. Z. Valiev, “Optimization of electrical conductivity and strength combined by structure design at the nanoscale in Al–Mg–Si alloy,” Acta Mater. 98, 355–366 (2015). CrossRef X. Sauvage, E. V. Bobruk, M. Yu. Murashkin, Y. Nasedkina, N. A. Enikeev, and R. Z. Valiev, “Optimization of electrical conductivity and strength combined by structure design at the nanoscale in Al–Mg–Si alloy,” Acta Mater. 98, 355–366 (2015). CrossRef
25.
go back to reference G. Liu, J. Sun, C. W. Nan, and K. H. Chen, “Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys,” Acta Mater. 53, 3459–3468 (2005). CrossRef G. Liu, J. Sun, C. W. Nan, and K. H. Chen, “Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys,” Acta Mater. 53, 3459–3468 (2005). CrossRef
Metadata
Title
Grain Refinement and Strengthening Mechanism Analysis of an Ultrahigh Strength Sc(Er)–Zr–7075 Aluminum Alloy
Authors
Jinfeng Leng
Binghui Ren
Yunfan Dong
Hao Wu
Publication date
18-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 14/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21140143