Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 8/2022

07-03-2022 | Technical Article

Grain Refining Behavior by Dynamic Recrystallization of As-Forged Austenitic Stainless Steel with High N

Authors: Jinliang Wang, Fengming Qin, Huiqin Chen

Published in: Journal of Materials Engineering and Performance | Issue 8/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Flow behavior and microstructure evolution of as-forged austenitic stainless steel with high N were investigated by isothermal compression tests at 950-1200 °C with strain rate of 0.001-1 s−1 and strain of 30-50% using Gleeble-3800 thermal mechanical simulation machine. The hyperbolic sine constitutive equation was established during isothermal compression with different parameters. The activation energy and stress exponent were 550 KJ mol−1 and 4.715, which is lower than the value of as-casted austenitic stainless steel with high N and higher than other austenitic stainless steel such as 304 and 316. It indicates that the dynamic softening behavior is related to the original structure and material composition. The dynamic softening behavior and grain refining progress were studied employing microstructure analysis techniques. It was found by comparing with the as-casted microstructure, the dynamic recrystallization behavior for as-forged sample was more sensitive to strain rate and less affected by temperature, strain and original structure. This should mainly depend on the stacking fault energy related to the material composition. When strain rate is less than 0.1 s−1, the dynamic softening is characterized by serration, bulging and strain-induced separation of original grain boundary. While strain rate is 1 s−1, the nucleation and progress of dynamic recrystallization grain were related to formation and interaction of Σ3 twin boundaries. With the increase of strain, the recrystallization fraction increases linearly with the number of twin boundaries. The recrystallization fraction increased to 86.2% and the grain size was refined to 16.6μm depending on twinning mechanism by compressing to 50% at 1100 °C with strain rate of 1s-1.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.M. Hussaini, S.K. Singh and A.K. Gupta, Experimental and Numerical Investigation of Formability for Austenitic Stainless Steel 316 at Elevated Temperatures, J. Market. Res., 2014, 3(1), p 17–24. S.M. Hussaini, S.K. Singh and A.K. Gupta, Experimental and Numerical Investigation of Formability for Austenitic Stainless Steel 316 at Elevated Temperatures, J. Market. Res., 2014, 3(1), p 17–24.
2.
go back to reference H. Sun, Y. Sun, R. Zhang et al., Hot Deformation Behavior and Microstructural Evolution of a Modified 310 Austenitic Steel, Mater. Des., 2014, 64(9), p 374–380. CrossRef H. Sun, Y. Sun, R. Zhang et al., Hot Deformation Behavior and Microstructural Evolution of a Modified 310 Austenitic Steel, Mater. Des., 2014, 64(9), p 374–380. CrossRef
3.
go back to reference J.W. Simmons, Overview: High-Nitrogen Alloying of Stainless Steels, Mater. Sci. Eng. A, 1996, 207, p 159–169. CrossRef J.W. Simmons, Overview: High-Nitrogen Alloying of Stainless Steels, Mater. Sci. Eng. A, 1996, 207, p 159–169. CrossRef
4.
go back to reference H.Y. Ha, T.H. Lee, C.S. Oh et al., Effects of Combined Addition of Carbon and Nitrogen on Pitting Corrosion Behavior of Fe-18Cr-10Mn Alloys, Scr. Mater., 2009, 61(2), p 121–124. CrossRef H.Y. Ha, T.H. Lee, C.S. Oh et al., Effects of Combined Addition of Carbon and Nitrogen on Pitting Corrosion Behavior of Fe-18Cr-10Mn Alloys, Scr. Mater., 2009, 61(2), p 121–124. CrossRef
5.
go back to reference J. Moon, T.H. Lee, J.H. Shin et al., Hot Working Behavior of a Nitrogen-Alloyed Fe-18Mn-18Cr-N Austenitic Stainless Steel, Mater. Sci. Eng. A, 2014, 594, p 302–308. CrossRef J. Moon, T.H. Lee, J.H. Shin et al., Hot Working Behavior of a Nitrogen-Alloyed Fe-18Mn-18Cr-N Austenitic Stainless Steel, Mater. Sci. Eng. A, 2014, 594, p 302–308. CrossRef
6.
go back to reference D.W. Kim, Influence of Nitrogen-Induced Grain Refinement on Mechanical Properties of Nitrogen Alloyed Type 316LN Stainless Steel, J. Nucl. Mater., 2012, 420(1), p 473–478. CrossRef D.W. Kim, Influence of Nitrogen-Induced Grain Refinement on Mechanical Properties of Nitrogen Alloyed Type 316LN Stainless Steel, J. Nucl. Mater., 2012, 420(1), p 473–478. CrossRef
7.
go back to reference H.C. Holm, P.J. Uggowitzer and M.O. Speidel, Influence of Annealing Temperature on the Microstructure and Mechanical Properties of a High Nitrogen Containing Austenitic Stainless Steel, Scr. Metall., 1987, 21(4), p 513–518. CrossRef H.C. Holm, P.J. Uggowitzer and M.O. Speidel, Influence of Annealing Temperature on the Microstructure and Mechanical Properties of a High Nitrogen Containing Austenitic Stainless Steel, Scr. Metall., 1987, 21(4), p 513–518. CrossRef
8.
go back to reference Z. Wang, W. Fu, S. Sun et al., Effect of Hot Deformation on the Nitride Precipitation Behavior in High Nitrogen Austenitic Steel, J. Mater. Eng. Perform., 2010, 19(7), p 951–954. CrossRef Z. Wang, W. Fu, S. Sun et al., Effect of Hot Deformation on the Nitride Precipitation Behavior in High Nitrogen Austenitic Steel, J. Mater. Eng. Perform., 2010, 19(7), p 951–954. CrossRef
9.
go back to reference D.P.R. Palaparti, V. Ganesan, J. Christopher et al., Tensile Flow Analysis of Austenitic Type 316LN Stainless Steel: Effect of Nitrogen Content, J. Mater. Eng. Perform., 2021, 30(3), p 2074–2082. CrossRef D.P.R. Palaparti, V. Ganesan, J. Christopher et al., Tensile Flow Analysis of Austenitic Type 316LN Stainless Steel: Effect of Nitrogen Content, J. Mater. Eng. Perform., 2021, 30(3), p 2074–2082. CrossRef
10.
go back to reference A. Dehghan-Manshadi, A. Shokouhi and P.D. Hodgson, Effect of Isothermal Dissolution and Re-precipitation of Austenite on the Mechanical Properties of Duplex Structures, Mater. Sci. Eng. A, 2010, 527, p 6765–6770. CrossRef A. Dehghan-Manshadi, A. Shokouhi and P.D. Hodgson, Effect of Isothermal Dissolution and Re-precipitation of Austenite on the Mechanical Properties of Duplex Structures, Mater. Sci. Eng. A, 2010, 527, p 6765–6770. CrossRef
11.
go back to reference E.S. Silva, R.C. Sousa, A.M. Jorge et al., Hot Deformation Behavior of an Nb- and N-Bearing Austenitic Stainless Steel Biomaterial, Mater. Sci. Eng. A, 2012, 543, p 69–75. CrossRef E.S. Silva, R.C. Sousa, A.M. Jorge et al., Hot Deformation Behavior of an Nb- and N-Bearing Austenitic Stainless Steel Biomaterial, Mater. Sci. Eng. A, 2012, 543, p 69–75. CrossRef
12.
go back to reference B. Kishor, G.P. Chaudhari and S.K. Nath, Hot Deformation Characteristics of 13Cr-4Ni Stainless Steel Using Constitutive Equation and Processing Map, J. Mater. Eng. Perform., 2016, 25(7), p 2651–2660. CrossRef B. Kishor, G.P. Chaudhari and S.K. Nath, Hot Deformation Characteristics of 13Cr-4Ni Stainless Steel Using Constitutive Equation and Processing Map, J. Mater. Eng. Perform., 2016, 25(7), p 2651–2660. CrossRef
13.
go back to reference K. Nitin, K. Hansoge Nitin, K.G. Amit and K.S. Swadesh, Study of Hot Deformation Behavior Using Phenomenological Based Constitutive Model for Austenitic Stainless Steel 316, Mater. Today Proc., 2018, 5, p 4870–4877. CrossRef K. Nitin, K. Hansoge Nitin, K.G. Amit and K.S. Swadesh, Study of Hot Deformation Behavior Using Phenomenological Based Constitutive Model for Austenitic Stainless Steel 316, Mater. Today Proc., 2018, 5, p 4870–4877. CrossRef
14.
go back to reference R.K.C. Nkhoma, C.W. Siyasiya and W.E. Stumpf, Hot workability of AISI 321 and AISI 304 Austenitic Stainless Steels, J. Alloy. Compd., 2014, 595, p 103–112. CrossRef R.K.C. Nkhoma, C.W. Siyasiya and W.E. Stumpf, Hot workability of AISI 321 and AISI 304 Austenitic Stainless Steels, J. Alloy. Compd., 2014, 595, p 103–112. CrossRef
15.
go back to reference F. Qin, Z. Hua, Z. Wang et al., Dislocation and Twinning Mechanisms for Dynamic Recrystallization of as-cast Mn18Cr18N steel, Mater. Sci. Eng. A, 2016, 684, p 634–644. CrossRef F. Qin, Z. Hua, Z. Wang et al., Dislocation and Twinning Mechanisms for Dynamic Recrystallization of as-cast Mn18Cr18N steel, Mater. Sci. Eng. A, 2016, 684, p 634–644. CrossRef
16.
go back to reference E.J. Giordani, A.M. Jorge and O. Balancin, Proportion of Recovery and Recrystallization During Interpass Times at High Temperatures on a Nb- and N-Bearing Austenitic Stainless Steel Biomaterial, Scr. Mater., 2006, 55(8), p 743–746. CrossRef E.J. Giordani, A.M. Jorge and O. Balancin, Proportion of Recovery and Recrystallization During Interpass Times at High Temperatures on a Nb- and N-Bearing Austenitic Stainless Steel Biomaterial, Scr. Mater., 2006, 55(8), p 743–746. CrossRef
17.
go back to reference G.R. Ebrahimi, H. Keshmiri, A. Momeni et al., Dynamic Recrystallization Behavior of a Super Austenitic Stainless Steel Containing 16%Cr and 25%Ni, Mater. Sci. Eng. A, 2011, 528(25–26), p 7488–7493. CrossRef G.R. Ebrahimi, H. Keshmiri, A. Momeni et al., Dynamic Recrystallization Behavior of a Super Austenitic Stainless Steel Containing 16%Cr and 25%Ni, Mater. Sci. Eng. A, 2011, 528(25–26), p 7488–7493. CrossRef
18.
go back to reference M.E. Wahabi, L. Gavard, F. Montheillet et al., Effect of Initial Grain Size on Dynamic Recrystallization in High Purity Austenitic Stainless Steels, Acta Mater., 2005, 53(17), p 4605–4612. CrossRef M.E. Wahabi, L. Gavard, F. Montheillet et al., Effect of Initial Grain Size on Dynamic Recrystallization in High Purity Austenitic Stainless Steels, Acta Mater., 2005, 53(17), p 4605–4612. CrossRef
19.
go back to reference H.R. Ashtiani, M.H. Parsa and H. Bisadi, Effects of Initial Grain Size on Hot Deformation Behavior of Commercial Pure Aluminum, Mater. Des., 2012, 42, p 478–485. CrossRef H.R. Ashtiani, M.H. Parsa and H. Bisadi, Effects of Initial Grain Size on Hot Deformation Behavior of Commercial Pure Aluminum, Mater. Des., 2012, 42, p 478–485. CrossRef
20.
go back to reference G. Liu, H. Ying, Z. Shi et al., Hot Deformation and Optimization of Process Parameters of an as-cast 6Mo Super Austenitic Stainless Steel: A Study with Processing Map, Mater. Des., 2014, 53(1), p 662–672. CrossRef G. Liu, H. Ying, Z. Shi et al., Hot Deformation and Optimization of Process Parameters of an as-cast 6Mo Super Austenitic Stainless Steel: A Study with Processing Map, Mater. Des., 2014, 53(1), p 662–672. CrossRef
21.
go back to reference C. Rehrl, S. Kleber, O. Renk et al., Effect of Grain Size in Compression Deformation on the Microstructural Evolution of an Austenitic Stainless Steel, Mater. Sci. Eng. A, 2012, 540(4), p 55–62. CrossRef C. Rehrl, S. Kleber, O. Renk et al., Effect of Grain Size in Compression Deformation on the Microstructural Evolution of an Austenitic Stainless Steel, Mater. Sci. Eng. A, 2012, 540(4), p 55–62. CrossRef
22.
go back to reference E. Popova, A.P. Brahme, Y. Staraselski et al., Effect of Extension Twins on Texture Evolution at Elevated Temperature Deformation Accompanied by Dynamic Recrystallization, Mater. Des., 2016, 96, p 446–457. CrossRef E. Popova, A.P. Brahme, Y. Staraselski et al., Effect of Extension Twins on Texture Evolution at Elevated Temperature Deformation Accompanied by Dynamic Recrystallization, Mater. Des., 2016, 96, p 446–457. CrossRef
23.
go back to reference M. Sumantra, A.K. Bhaduri and S.V. Subramanya, Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. and Mater. Trans. A., 2012, 43, p 2056–2068. CrossRef M. Sumantra, A.K. Bhaduri and S.V. Subramanya, Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. and Mater. Trans. A., 2012, 43, p 2056–2068. CrossRef
24.
go back to reference H. Mirzadeh, J.M. Cabrera, J.M. Prado and A. Najafizadeh, Hot Deformation Behavior of a Medium Carbon Micro Alloyed Steel, Mater. Sci. Eng. A, 2011, 528, p 3876–3882. CrossRef H. Mirzadeh, J.M. Cabrera, J.M. Prado and A. Najafizadeh, Hot Deformation Behavior of a Medium Carbon Micro Alloyed Steel, Mater. Sci. Eng. A, 2011, 528, p 3876–3882. CrossRef
25.
go back to reference D. Samantaray, S. Mandal, M. Jayalakshmi, C.N. Athreya, A.K. Bhaduri and V.S. Sarma, New Insights into the Relationship Between Dynamic Softening Phenomena and Efficiency of Hot Working Domains of a Nitrogen Enhanced 316L(N) Stainless steel, Mater. Sci. Eng. A, 2011, 598, p 368–375. CrossRef D. Samantaray, S. Mandal, M. Jayalakshmi, C.N. Athreya, A.K. Bhaduri and V.S. Sarma, New Insights into the Relationship Between Dynamic Softening Phenomena and Efficiency of Hot Working Domains of a Nitrogen Enhanced 316L(N) Stainless steel, Mater. Sci. Eng. A, 2011, 598, p 368–375. CrossRef
26.
go back to reference C.J. Wang, H. Feng and W.J. Zheng, Dynamic Recrystallization Behavior and Microstructure Evolution of AISI 304N Stainless Steel, J. Iron. Steel Res. Int., 2013, 20, p 07–112. C.J. Wang, H. Feng and W.J. Zheng, Dynamic Recrystallization Behavior and Microstructure Evolution of AISI 304N Stainless Steel, J. Iron. Steel Res. Int., 2013, 20, p 07–112.
27.
go back to reference T. Xi, C.G. Yang, M.B. Shahzad and K. Yang, Study of the Processing Map and Hot Deformation Behavior of a Cu-bearing 317LN Austenitic Stainless Steel, Mater. Des., 2015, 87, p 303–312. CrossRef T. Xi, C.G. Yang, M.B. Shahzad and K. Yang, Study of the Processing Map and Hot Deformation Behavior of a Cu-bearing 317LN Austenitic Stainless Steel, Mater. Des., 2015, 87, p 303–312. CrossRef
28.
go back to reference A. Dehghan-Manshadi, H. Beladi, M.R. Barnett et al., Recrystallization in 304 Austenitic Stainless Steel, Mater. Sci. Forum, 2004, 467–470, p 1163–1168. CrossRef A. Dehghan-Manshadi, H. Beladi, M.R. Barnett et al., Recrystallization in 304 Austenitic Stainless Steel, Mater. Sci. Forum, 2004, 467–470, p 1163–1168. CrossRef
29.
go back to reference M. Wang, Z.J. Zhou, H.Y. Sun et al., Effects of Plastic Deformations on Microstructure and Mechanical Properties of ODS-310 Austenitic Steel, J. Nucl. Mater., 2012, 430(1–3), p 259–263. CrossRef M. Wang, Z.J. Zhou, H.Y. Sun et al., Effects of Plastic Deformations on Microstructure and Mechanical Properties of ODS-310 Austenitic Steel, J. Nucl. Mater., 2012, 430(1–3), p 259–263. CrossRef
30.
go back to reference A. Dehghan-Manshadi, M.R. Barnett and P.D. Hodgson, Recrystallization in AISI 304austeniticstainless Steel During and After Hot Deformation, Mater. Sci. Eng. A, 2008, 485(1–2), p 664–672. CrossRef A. Dehghan-Manshadi, M.R. Barnett and P.D. Hodgson, Recrystallization in AISI 304austeniticstainless Steel During and After Hot Deformation, Mater. Sci. Eng. A, 2008, 485(1–2), p 664–672. CrossRef
31.
go back to reference F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon-Elsevier, Oxford, 2004. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon-Elsevier, Oxford, 2004.
32.
go back to reference H. Beladi, P. Cizek and P.D. Hodgson, Dynamic Recrystallization of Austenite in Ni-30 Pct Fe Model Alloy: Microstructure and Texture Evolution, Metall. Mater. Trans. A, 2009, 40(5), p 1175–1189. CrossRef H. Beladi, P. Cizek and P.D. Hodgson, Dynamic Recrystallization of Austenite in Ni-30 Pct Fe Model Alloy: Microstructure and Texture Evolution, Metall. Mater. Trans. A, 2009, 40(5), p 1175–1189. CrossRef
33.
go back to reference S. Mandal, P.V. Sivaprasad, B. Raj et al., Grain Boundary Microstructural Control Through Thermo Mechanical Processing in a Titanium-Modified Austenitic Stainless Steel, Metall. and Mater. Trans. A., 2008, 39(13), p 3298–3307. CrossRef S. Mandal, P.V. Sivaprasad, B. Raj et al., Grain Boundary Microstructural Control Through Thermo Mechanical Processing in a Titanium-Modified Austenitic Stainless Steel, Metall. and Mater. Trans. A., 2008, 39(13), p 3298–3307. CrossRef
34.
go back to reference V.Y. Gertsman and C.H. Henager, Grain Boundary Junctions in Microstructure Generated by Multiple Twinning, Interface Sci., 2003, 11(4), p 403–415. CrossRef V.Y. Gertsman and C.H. Henager, Grain Boundary Junctions in Microstructure Generated by Multiple Twinning, Interface Sci., 2003, 11(4), p 403–415. CrossRef
35.
go back to reference L. Wang, P. Guan, T. Jiao et al., New Twinning Route in Face-Centered Cubic Nanocrystalline Metals, Nat. Commun., 2017, 8(1), p 2142. CrossRef L. Wang, P. Guan, T. Jiao et al., New Twinning Route in Face-Centered Cubic Nanocrystalline Metals, Nat. Commun., 2017, 8(1), p 2142. CrossRef
36.
go back to reference X. Zhong, L. Huang and F. Liu, Discontinuous Dynamic Recrystallization Mechanism and Twinning Evolution during Hot Deformation of Incoloy 825, J. Mater. Eng. Perform., 2020, 29(9), p 6155–6169. CrossRef X. Zhong, L. Huang and F. Liu, Discontinuous Dynamic Recrystallization Mechanism and Twinning Evolution during Hot Deformation of Incoloy 825, J. Mater. Eng. Perform., 2020, 29(9), p 6155–6169. CrossRef
37.
go back to reference A.M. Wusatowska-Sarnek, H. Miura and T. Sakai, Nucleation and Micro-texture Development Under Dynamic Recrystallization of Copper, Mater. Sci. Eng. A, 2002, 323(1–2), p 177–186. CrossRef A.M. Wusatowska-Sarnek, H. Miura and T. Sakai, Nucleation and Micro-texture Development Under Dynamic Recrystallization of Copper, Mater. Sci. Eng. A, 2002, 323(1–2), p 177–186. CrossRef
38.
go back to reference F. Qin, Y. Li, W. He et al., Effects of Deformation Microbands and Twins on Microstructure Evolution of as-Cast Mn18Cr18N Austenitic Stainless Steel, J. Mater. Res., 2017, 32(20), p 3864–3874. CrossRef F. Qin, Y. Li, W. He et al., Effects of Deformation Microbands and Twins on Microstructure Evolution of as-Cast Mn18Cr18N Austenitic Stainless Steel, J. Mater. Res., 2017, 32(20), p 3864–3874. CrossRef
39.
go back to reference Y. Wang, W.Z. Shao, L. Zhen et al., Flow Behavior and Microstructures of Superalloy 718 During High Temperature Deformation, Mater. Sci. Eng. A, 2008, 497(1–2), p 479–486. CrossRef Y. Wang, W.Z. Shao, L. Zhen et al., Flow Behavior and Microstructures of Superalloy 718 During High Temperature Deformation, Mater. Sci. Eng. A, 2008, 497(1–2), p 479–486. CrossRef
40.
go back to reference S. Allain, J.P. Chateau and O. Bouaziz, A Physical Model of the Twinning-Induced Plasticity Effect in a High Manganese Austenitic Steel, Mater. Sci. Eng. A, 2004, 387–389, p 143–147. CrossRef S. Allain, J.P. Chateau and O. Bouaziz, A Physical Model of the Twinning-Induced Plasticity Effect in a High Manganese Austenitic Steel, Mater. Sci. Eng. A, 2004, 387–389, p 143–147. CrossRef
41.
go back to reference W. Wang, W. Yan, K. Yang et al., Temperature Dependence of Tensile Behaviors of Nitrogen-Alloyed Austenitic Stainless Steels, J. Mater. Eng. Perform., 2010, 19(8), p 1214–1219. CrossRef W. Wang, W. Yan, K. Yang et al., Temperature Dependence of Tensile Behaviors of Nitrogen-Alloyed Austenitic Stainless Steels, J. Mater. Eng. Perform., 2010, 19(8), p 1214–1219. CrossRef
42.
go back to reference S. Mandal, A.K. Bhaduri and V.S. Sarma, Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. and Mater. Trans. A., 2012, 43(6), p 2056–2068. CrossRef S. Mandal, A.K. Bhaduri and V.S. Sarma, Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. and Mater. Trans. A., 2012, 43(6), p 2056–2068. CrossRef
43.
go back to reference W. Wang, F. Brisset, A.L. Helbert et al., Influence of Stored Energy on Twin Formation During Primary Recrystallization, Mater. Sci. Eng. A, 2014, 589(11), p 112–118. CrossRef W. Wang, F. Brisset, A.L. Helbert et al., Influence of Stored Energy on Twin Formation During Primary Recrystallization, Mater. Sci. Eng. A, 2014, 589(11), p 112–118. CrossRef
44.
go back to reference D. Ponge and G. Gottstein, Necklace Formation During Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta Mater., 1998, 46(1), p 69–80. CrossRef D. Ponge and G. Gottstein, Necklace Formation During Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta Mater., 1998, 46(1), p 69–80. CrossRef
45.
go back to reference S. Mitsche et al., Assessment of Dynamic Softening Mechanisms in Allvac®718Plus™ by EBSD Analysis, Mater. Sci. Eng. A, 2011, 528, p 3754–3760. CrossRef S. Mitsche et al., Assessment of Dynamic Softening Mechanisms in Allvac®718Plus™ by EBSD Analysis, Mater. Sci. Eng. A, 2011, 528, p 3754–3760. CrossRef
Metadata
Title
Grain Refining Behavior by Dynamic Recrystallization of As-Forged Austenitic Stainless Steel with High N
Authors
Jinliang Wang
Fengming Qin
Huiqin Chen
Publication date
07-03-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 8/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06717-4

Other articles of this Issue 8/2022

Journal of Materials Engineering and Performance 8/2022 Go to the issue

Premium Partners